267 research outputs found

    Drastically suppressing the error of ballistic readout of qubits

    Full text link
    The thermal jitter of transmission of magnetic flux quanta in long Josephson junctions is studied. While for large-to-critical damping and small values of bias current the physically obvious dependence of the jitter versus length σ∼L\sigma\sim\sqrt{L} is confirmed, for small damping starting from the experimentally relevant α=0.03\alpha=0.03 and below strong deviation from σ∼L\sigma\sim\sqrt{L} is observed, up to nearly complete independence of the jitter versus length, which is exciting from fundamental point of view, but also intriguing from the point of view of possible applications.Comment: 4 pages, 6 figure

    Towards a microwave single-photon counter for searching axions

    Get PDF
    The major task of detecting axions or axion-like particles has two challenges. On the one hand, the ultimate sensitivity is required, down to the energy of a single microwave photon of the yoctojoule range. On the other hand, since the detected events are supposed to be rare, the dark count rate of the detector must be extremely low. We show that this trade-off can be approached due to the peculiar switching dynamics of an underdamped Josephson junction in the phase diffusion regime. The detection of a few photons\u27 energy at 10 GHz with dark count time above 10 s and the efficiency close to unity was demonstrated. Further enhancements require a detailed investigation of the junction switching dynamics

    Approaching microwave photon sensitivity with Al Josephson junctions

    Get PDF
    Here, we experimentally test the applicability of an aluminium Josephson junction of a few micrometers size as a single photon counter in the microwave frequency range. We have measured the switching from the superconducting to the resistive state through the absorption of 10 GHz photons. The dependence of the switching probability on the signal power suggests that the switching is initiated by the simultaneous absorption of three and more photons, with a dark count time above 0.01 s

    Response of a cold-electron bolometer on thz radiation from a long yba2cu3o7−δ bicrystal josephson junction

    Get PDF
    The response of the Cold-Electron Bolometers (CEBs), integrated into a 2-D array of dipole antennas, has been measured by irradiation from YBa2Cu3O7−δ (YBCO) 50 \ub5m long Josephson junction into the THz region at frequencies from 0.1 to 0.8 THz. The possibility of controlling the amplitude-frequency characteristic is demonstrated by the external magnetic field in the traveling wave regime of a long Josephson junction. The YBCO junction has been formed on the bicrystal Zr1−xYxO2 (YSZ) substrate by magnetron sputtering and etching of the film. CEBs have been fabricated using an Al multilayer structure by a self-aligned shadow evaporation technique on Si substrate. Both receiver and oscillator have been located inside the same cryostat at 0.3 K and 2.7 K plates, respectively

    Efficiency of electron cooling in cold-electron bolometers with traps

    Get PDF
    Electron on-chip cooling from the base temperature of 300 mK is very important for highly sensitive detectors operating in space due to problems of dilution fridges at low gravity. Electron cooling is also important for ground-based telescopes equipped with 3He cryostats being able to function at any operating angle. This work is aimed at the investigation of electron cooling in the low -temperature range. New samples of cold-electron bolometers with traps and hybrid superconducting/ferromagnetic absorbers have shown a temperature reduction of the electrons in the refrigerator junctions from 300 to 82 mK, from 200 to 33 mK, and from 100 to 25 mK in the idle regime without optical power load. The electron temperature was determined by solving heat balance equa-tions with account of the leakage current, sixth power of temperature in the whole temperature range, and the Andreev current using numerical methods and an automatic fit algorithm

    Microwave photon detection by an Al Josephson junction

    Get PDF
    An aluminium Josephson junction (JJ), with a critical current suppressed by a factor of three compared with the maximal value calculated from the gap, is experimentally investigated for application as a threshold detector for microwave photons. We present the preliminary results of measurements of the lifetime of the superconducting state and the probability of switching by a 9 GHz external signal. We found an anomalously large lifetime, not described by the Kramers\u27 theory for the escape time over a barrier under the influence of fluctuations. We explain it by the phase diffusion regime, which is evident from the temperature dependence of the switching current histograms. Therefore, phase diffusion allows for a significant improvement of the noise immunity of a device, radically decreasing the dark count rate, but it will also decrease the single-photon sensitivity of the considered threshold detector. Quantization of the switching probability tilt as a function of the signal attenuation for various bias currents through the JJ is observed, which resembles the differentiation between N and N + 1 photon absorption

    Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

    Get PDF
    Here we present the results of a numerical modeling of mode composition in the constriction of the Large Scale Polarization Explorer-Short-Wavelength Instrument for the Polarization Explorer (LSPE-SWIPE) back-to-back horn. These results are used for calculating the frequency response of arrays of planar dipole antennas with cold-electron bolometers for 145, 210, and 240 GHz frequencies. For the main frequency channel (i.e., 145 GHz) we have a 45 GHz bandwidth. For the auxiliary frequency channels (i.e., 210 and 240 GHz) placed on the same substrate, we have bandwidths of 26 and 38 GHz, respectively. We performed some op-timizations for cold-electron bolometers to achieve a photon noise-equivalent power of 1.1 x 10-16 W/Hz1/2. This was achieved by replacing one of two superconductor-insulator-normal tunnel junctions with a superconductor-normal metal contact
    • …
    corecore