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Abstract: The response of the Cold-Electron Bolometers (CEBs), integrated into a 2-D array of dipole
antennas, has been measured by irradiation from YBa2Cu3O7−δ (YBCO) 50 µm long Josephson
junction into the THz region at frequencies from 0.1 to 0.8 THz. The possibility of controlling the
amplitude-frequency characteristic is demonstrated by the external magnetic field in the traveling
wave regime of a long Josephson junction. The YBCO junction has been formed on the bicrystal
Zr1−xYxO2 (YSZ) substrate by magnetron sputtering and etching of the film. CEBs have been
fabricated using an Al multilayer structure by a self-aligned shadow evaporation technique on
Si substrate. Both receiver and oscillator have been located inside the same cryostat at 0.3 K and 2.7 K
plates, respectively.

Keywords: anisotropic high-Tc grain-boundary; YBCO Josephson oscillator; cold-electron bolometer;
sine-Gordon equation

1. Introduction

The high precision measurements of the polarization in the cosmic microwave background (CMB)
radiation is one of the major tasks in modern cosmology, needed to detect primordial B-modes. B-mode
is a curl component of the polarization of CMB, which, as believed, left by the primordial gravitational
waves during the inflation stage of the universe’s evolution. Predicted by theory, if detected, it is
assumed to be a sufficient evidence of the inflationary epoch in the early universe [1].

The development of multichroic focal planes for measurements of the CMB is important for
increasing the sensitivity of an experiment as well as for removing the contamination due to galactic
foregrounds, which is becoming the limiting factor in CMB measurements [2]. The cold-electron
bolometer (CEB) is an attractive candidate for these measurements because the decoupling of the
phonon and electron subsystems in the tiny absorber gives it such advantages as high sensitivity and
high saturation power [3,4] as well as the immunity to cosmic rays [5]. CEBs can be used for on-chip
LC-filtering due to a series resonance of the SIN junction capacitance and the kinetic inductance of the
NbN strip [6–8] or the reactance of slot antennas connected by coplanar lines [9,10]. This property is
used for the creation of multichroic pixels with CEBs.
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The most actual task for the elaboration of multichroic bolometric systems is developing of the
broadband radiation source with narrow spectral linewidth, placed inside a cryostat to avoid multiple
reflections and sensitivity loss due to open windows. In recent years frequency calibrations of CEBs
have been carried out using external sources of the THz range [11,12] or filtered broadband thermal
sources [13,14]. These solutions are not very suitable when repetitive calibrations in a wide range of
frequencies for different resonant structures are required. Here we look at a calibration source based
on the long YBCO Josephson junction (JJ), having a continuous frequency tuning in a wide frequency
range from 0.1 to 2 THz.

High critical temperature bicrystal Josephson junctions can be used for THz frequency band
oscillators, detectors and Hilbert spectrometers, as was shown, for example, in [15,16]. Even relatively
weak radiation of a long YBCO JJ can be useful for spectral calibration of highly sensitive cryogenic
detectors. Josephson generators are one of the most convenient sources of GHz and subTHz signals [17]
because they have the potential to generate in a wide frequency range, and their main frequency is easily
determined by the Josephson relation. Measurements of high-temperature JJs, both YBa2Cu3O7−δ

and Bi2Sr2CaCu2O8, require the use of very sensitive detectors, such as integrated superconducting
heterodyne receivers [18–20], bolometers [21,22], quantum-dot single-photon detectors [23]. For the
analysis of planar YBCO junctions in all works short junctions were used [15–17]. In this work, we
analyze the regime that occurs only in a long JJ under the effect of the magnetic field, called a “traveling
wave” or “flux-flow” regime. The study of the flux-flow regime arising in JJ is a subject of practical
interest. In a long JJ (length, L � λJ , where λJ is the Josephson penetration depth), placed in an
external magnetic field, the fluxons can be created at one edge of the junction and after movement
along the junction radiated at the opposite edge, creating the so-called fluxon motion mode. When the
fluxon velocity u becomes close to the EM wave phase velocity c̄, a current step (velocity-matching or
flux-flow step) appears at the current-voltage (IV) characteristic. While for low-Tc Josephson junctions
this regime was investigated both experimentally [24–31] and theoretically [32–44], there were just
a few works for high-Tc JJs in this regime [45–48], and their analysis was limited to the study of
dc characteristics.

This work aims to study theoretically and experimentally the flux-flow regime and THz radiation,
arising in this regime, of long YBCO bicrystal Josephson junction (YBCO FFO), by means of the
CEB receiver.

2. Experimental Setup

CEB represents SINIS (SIN—superconductor-insulator-normal metal) junctions Al/Al2O3/Al-Fe/
Al2O3/Al with a normal metal tiny nanoabsorber made of aluminum with suppressed superconductivity
due to underlayer of Fe. The saturation power for one CEB is about 0.5 pW. Taking into account
the expected power load, the 2-dimensional array of CEBs [49] has been realized as a meander-type
structure [3,12]. The receiving system represents a single pixel for the Olimpo balloon experiment,
optimized for power loads up to 100 pW. The unit cell of dipoles is a modification of the dense
rectangular grid, distributed in a more sparse way over the unit cell [49]. The serial and parallel DC
connections of CEBs are optimized for impedance matching and minimal overall system noise [3].
The pairs of λ/2 dipoles sensitive to both orthogonal linear polarizations are connected to each other
by dc lines with 1 µm width. The impedance of each bolometer comes from a series connection of a
30 Ohm resistance and a 55 fF capacitance. In difference with the original design [3,12], the unetched
280 µm substrate has been used to match the bolometer bandwidth with the YBCO oscillator antenna
bandwidth in the range 240–280 GHz.

The long grain boundary Josephson junctions (GBJs) were fabricated by on-axis dc magnetron
sputtering [50] of YBa2Cu3O7−δ thin films on the surface of 24◦[001]-tilt Zr1−xYxO2 bicrystal substrates
and further etching. The length of the junctions L along the grain boundary (sample photo in
Figure 1) was 50 µm, the thickness was 0.3 µm. We have obtained critical current density 370 kA/cm2

and the IcRn product of 1.54 mV for T = 6 K. The junctions were very long since their lengths are
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much larger than the Josephson penetration depth λJ =
√

Φ0/(2πµ0 Jcd) = 0.6− 0.9 µm (T∼6 K),
which determines the size of a fluxon in the junction. Based on the analysis of the transport properties,
the best structures were selected and located at the center of the Si lens for effective radiation.
The perpendicular to the grain boundary magnetic field Be of the order of tenths Gauss was produced
by a copper wire coil with many adjacent loops (solenoid). The coil inner diameter of 10 mm was
at least one order of magnitude larger than the junction length. Therefore, the magnetic field in the
vicinity of the junction was assumed to be nearly uniform [50]. We have checked that the detector itself
has no response to the magnetic field through the Josephson oscillator coil.

In Figure 1 the scheme of the experimental setup is presented. The distance between the detector
(CEBs) and the source (YBCO) is 3 cm. The YSZ substrate with the YBCO GBJ was attached to the Si
hyperhemisphere lens with 4 mm diameter at the 2.7K plate of 3He refrigerator. The radiation from
YBCO goes after the lens through the copper horn to the Si substrate with the CEBs from the bottom
side. The receiving detector consists of an array of 192 CEBs, connected in 4 parallel rows to match
with JFET amplifier impedance [3]. The array is surrounded by a copper shield [14] to avoid radiation
from other directions and is attached to the 0.3 K cryostat plate.

Figure 1. The view of the experimental setup, its schematic representation and samples design.

3. Experimental Results

In Figure 2, the current-voltage characteristics of CEBs are shown for the case of no signal (no
bias of YBCO oscillator) and the case under YBCO JJ power load. Bolometer response is defined as a
voltage difference at a fixed bias current through the CEBs array with and without the JJ radiation.
Based on the response characteristic (the inset of Figure 2) the bias current for the bolometer has been
chosen aside from the maximum response since there is a minimal value of noise-equivalent-power [3].

Changing the current through the Josephson junction (for zero current through the coil, creating
the magnetic field), the signal from the bolometer and the voltage on the YBCO oscillator (which is
connected with the oscillation frequency via the Josephson relation) have been measured, see Figure 3.
The detected signal consists of two components. The first one, smooth, corresponds to infrared
radiation from an overheated Josephson junction and magnetic coil. It can be well described by a
spline line VCEB = aV2

YBCO + bVYBCO + c (dashed curve in Figure 3). The second component, uneven,
is a generation signal at the Josephson frequency f = 2eVYBCO/h and is sensitive to a magnetic field.
To reduce the first component, the measurements were carried out as quickly as possible, which was
allowed without loss of accuracy thanks to the fast response of CEBs. The adjustment of JJ bias and
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measurement time of the bolometer response to the JJ radiation of a given frequency is milliseconds,
while the duration of the thermal response due to system overheating is seconds.

Figure 2. Current-voltage characteristic of bolometer for the case of no signal and under the YBCO JJ
radiation. The inset: CEBs response as a function of bias current. The mark corresponds to the used bias.

Figure 3. Left: CEBs voltage (solid curve) and a fitting spline (dashed curve). Right: current-voltage
characteristic of YBCO oscillator.

Subtracting the component of the background heating signal, the response of the bolometer to
the YBCO JJ radiation as a function of frequency was obtained (blue solid curve in Figure 4, marked
as YBCO, for the case of zero magnetic field when the only bias current through JJ was varied). It is
seen that the response consists of several peaks with different heights. Comparing it with the CEBs
amplitude-frequency characteristic (AFC) obtained by the calibrated backward-wave oscillator (BWO)
source (green symbols in Figure 4), one can conclude that the peak positions are determined both by
characteristics of the receiving and the radiating systems. If in addition to bias current, one starts to
vary the magnetic field (current through the coil), the response grows significantly and larger peaks
can be visible (red dashed curve in Figure 4). It should be noted that the CEB AFC measurements
were performed with BWO source placed outside the cryostat, and the signal was strongly attenuated
both by attenuators placed at BWO, and also by null-density filters at the cryostat windows to prevent
from 0.3 K plate overheating due to incoming THz signal. The internal inhomogeneity of the BWO
amplitude–frequency characteristic was properly taken into account when plotting the corresponding
curve of Figure 4.



Appl. Sci. 2020, 10, 7667 5 of 11

Figure 4. CEBs response depending on YBCO voltage (oscillation frequency). Comparison of the CEBs
signal from BWO and YBCO sources. Signatures of YBCO and YBCO FFO correspond to the case of
zero magnetic field and case of magnetic field variation.

Figure 5 presents the experimental IV curves of YBCO JJ for various values of the applied magnetic
field. The color indicates the level of CEBs response. We observe field dependent steps, characteristic
to the travelling wave regime in a long Josephson junction. It should be noted that in difference with
Nb junctions [38], for YBCO structures, due to larger damping, it is rather difficult to distinguish
between various step types, such as displaced linear slopes, Fiske steps and velocity matching (VM)
steps [51,52]. The separate peaks, repeated at the same frequency for all magnetic fields, are attributed
to overlapping responses between different harmonics of antennas of YBCO oscillator and CEBs array.
The AFC of the YBCO antenna has recently been measured in [52] from the height of Shapiro step in
the frequency range from 240 to 350 GHz with the same BWO as a radiation source. The maximum
response has been observed from 250 to 280 GHz, which corresponds to the first harmonics of the
YBCO JJ dipole antenna.

Figure 5. The experimental IV curves of bicrystal junction L = 50 µm correspond to the increasing
magnetic field (from top to bottom). The color indicates the level of CEBs response.

Figure 6 shows the CEBs response (dependent on the absorbed power) for several values of the
external magnetic field. For convenience, the curves starting from the second one are shifted up by
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0.5 mV relative to the previous one. To characterize this picture, let us smooth out the dependences
(grey dashed curves in Figure 6) and find the voltage of the local maximum of the response Vmr and
the value of response Smr. It can be seen that for larger magnetic fields, the position of maxima is
shifted towards higher voltages as it must in the traveling wave regime, see also Figure 5.

Figure 6. CEBs response for increasing magnetic fields through the YBCO oscillator. For convenience,
the curves starting from the second one are shifted up by 0.5 mV relative to the previous one. Marks
correspond to the local maximum of each smoothed characteristic.

An array of fluxons, which for a high magnetic fields transforms into the travelling wave,
propagates along the junction with the phase velocity u = Vdc/(dµ0He) [46], where Vdc is the average
voltage across the junction, He is the external magnetic field applied in the direction perpendicular
to the grain boundary, d is the effective magnetic thickness of the barrier and µ0 is the magnetic
constant. The voltage at the top of the flux-flow step on the IV characteristic is determined by the
VM condition: the velocity u approaches the Swihart velocity c̄ and, hence, Vvm ≈ c̄dµ0He = c̄dBe.
This ratio is confirmed experimentally: the voltage position of the step for larger fields depends
linearly on the applied field [46,51]. The voltage range from 0.2 to 1.1 mV corresponds to Josephson
frequencies ranging from about 100 to 550 GHz. The VM step becomes smaller and wider as the
voltage is increased. This is expected from the increasing surface losses at higher frequencies [38].
The same picture is observed for the received power (CEBs response): the applied magnetic field
allows to increase the response voltage Vmr in a wider frequency range.

To find out what the maximum power is possible for a given voltage (frequency) in the travelling
wave regime, it is necessary to investigate the Smr(Vmr) characteristic (red dashed curve in Figure 7),
i.e., the envelope of the maximums of each of smoothed curves from Figure 6. Each point corresponds
to a different magnetic field value. The dependence of the CEBs response on the YBCO voltage
Smr(Vmr) has a flat maximum at the frequency range ∼350–500 GHz. The form of this curve also
depends on surface losses, the antenna system, impedance matching, etc. It is interesting to compare
the power from the JJ, operating in the phase rotation regime, when the external magnetic field is
zero and the frequency is tuned by the bias current variation only (blue solid curve in Figure 7),
and YBCO FFO, operating in the traveling wave regime with the frequency tuned by both bias current
and magnetic field variation. One can see that in the latter case the oscillation power increases and can
be observed in a much wider frequency range. Therefore, this experimental result is a confirmation of
recent theoretical observation that the oscillation power in the case of lag-synchronization (occurring
also in the travelling wave regime) can be several orders of magnitude larger than for perfect in-phase
synchronization of chain elements [53]. These results also show the advantages of using long Josephson
junctions over short ones to develop an effective THz generator. It should be noted that in the previous
work on detecting the generation of a short Josephson junction using a CEB [16], it was shown that
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when a magnetic field is applied to the JJ, the amplitude of the received signal decreases, while in our
case the amplitude grows.

Figure 7. The maximum response depending on YBCO voltage for bicrystal junction with the length
L = 50 µm for phase rotation regime (blue solid curve) and traveling wave regime (red dashed curve).

4. Theory

Theoretical analysis is based on the sine-Gordon equation [50,54]:

φtt + αφt − φxx = βφxxt + η − sin φ, (1)

where indices t and x denote temporal and spatial derivatives, φ is the phase order parameter.
Space and time are normalized to the Josephson penetration length λJ and to the inverse plasma
frequency ω−1

p , respectively, α = ωp/ωc is the damping parameter, ωp =
√

2eIc/h̄C, ωc = 2eIcRN/h̄,
β is the surface loss parameter, η is the bias current normalized to the critical current. The boundary
conditions that simulate simple RC-loads, see Refs. [34,38,40,41], have the form:

φ(0, t)x + rLcLφ(0, t)xt − cLφ(0, t)tt + (2)

βrLcLφ(0, t)xtt + βφ(0, t)xt = Γ,

φ(L, t)x + rRcRφ(L, t)xt + cRφ(L, t)tt + (3)

βrRcRφ(L, t)xtt + βφ(L, t)xt = Γ.

Here Γ = He/(λJ Jc) is the normalized magnetic field. The dimensionless capacitances and
resistances, cL,R and rL,R, are the FFO RC-load placed at the left (output) and at the right (input) ends,
respectively. The power P of radiation, emitted from the junction output edge is normalized to the
Josephson power PJ = V2

J /Z0, where Z0 is the characteristic impedance of the junction.
The computer simulations of the sine-Gordon equation are performed for the following

parameters: damping α = 1.5, surface loss β = 0.1, and dimensionless junction length l = 70.
Figure 8 shows the theoretical IV curves for various values of applied magnetic field Γ. The color

indicates the level of radiation power P. In the present case, the antenna bandwidth is not considered,
assuming that the junction is perfectly matched to a load in the whole frequency range. We observe
the regime of a continuous flow of fluxons, which for larger magnetic fields smoothly transforms into
the travelling wave regime. The inset of Figure 8 shows the radiated power level for several values
of the magnetic field. Here we marked the voltage position of the maximum power as Vmp and the
maximum power as Pmp.
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Figure 8. The theoretical IV curves correspond to increasing magnetic field Γ (from top to bottom).
The color indicates the level of radiated power. The inset: Power P for various magnetic fields (Γ = 0.6;
1.6; 2.6) versus normalized voltage.

Figure 9 shows the dependence of the power level versus normalized voltage Pmp(Vmp) for zero
external magnetic field (blue solid curve) and nonzero external magnetic field, leading to a traveling
wave regime (red dashed curve). Both theoretical curves show the behavior, qualitatively similar to
the experiment (see Figure 7), they both have maxima, but the maximum, corresponding to YBCO
FFO, is wider and reaches larger values. Therefore, such dependences demonstrate the advantage
of a long YBCO JJ, operating in the traveling wave regime, compared with short and long junctions
operating in the phase rotation regime, as THz broadband sources.

Figure 9. The maximum value of power level depending on voltage for phase rotation regime (blue
solid curve) and traveling wave regime (red dashed curve).

5. Conclusions

The investigation of the response of a Cold Electron Bolometer receiver on the THz radiation of long
24◦[001]-tilt YBa2Cu3O7−δ bicrystal grain-boundary junctions has been performed. The investigation of
maximum oscillation power versus magnetic field is performed both experimentally and theoretically
and its dependence corresponds to the traveling wave regime. While the antennas of both emitting and
receiving systems were tuned in the frequency range from 250 to 320 GHz, the visible response has been
detected in windows up to 0.8 THz. The maximal received power as estimated from fitting of CEBs
IV response is rather low and of the order of 10 pW, that can be explained by poor matching of YBCO
junction with its antenna due to unknown impedance and a difference in the dielectric constant of the JJ
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YSZ substrate and Si lens material. Despite the fact that the considered sample of the long YBCO JJ
has low generation efficiency, such oscillators can be useful for spectral calibration of low-temperature
bolometers, receivers, and single-photon detectors.
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