845 research outputs found
Naked Singularity in a Modified Gravity Theory
The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different
geometries. In particular, we apply the method to the Schwarzschild background
with positive and negative mass parameter. In this way, we put on the same
level of comparison the related naked singularity (-M) and the positive mass
wormhole. We discuss how to extract information in the context of a f(R)
theory. We use the Wheeler-De Witt equation as a basic equation to perform such
an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R)=R, reveals that to this
approximation level, it is not possible to classify the Schwarzschild and its
naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the
proceeding
The Cosmological Constant as an Eigenvalue of a Sturm-Liouville Problem and its Renormalization
We discuss the case of massive gravitons and their relation with the
cosmological constant, considered as an eigenvalue of a Sturm-Liouville
problem. A variational approach with Gaussian trial wave functionals is used as
a method to study such a problem. We approximate the equation to one loop in a
Schwarzschild background and a zeta function regularization is involved to
handle with divergences. The regularization is closely related to the
subtraction procedure appearing in the computation of Casimir energy in a
curved background. A renormalization procedure is introduced to remove the
infinities together with a renormalization group equation.Comment: 8 pages, Talk given at "QFEXT'05", the 7-th workshop on quantum field
theory under the influence of external conditions, Barcelona, Spain, Sept.
5-9, 200
Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime
Following the subtraction procedure for manifolds with boundaries, we
calculate by variational methods, the Schwarzschild-de Sitter and the de Sitter
space energy difference. By computing the one loop approximation for TT tensors
we discover the existence of an unstable mode even for the non-degenerate case.
This result seems to be in agreement with the sub-maximal black hole pair
creation of Bousso-Hawking. The instability can be eliminated by the boundary
reduction method. Implications on a foam-like space are discussed.Comment: 19 pages,RevTeX with package epsf and four eps figures. Added other
references. Accepted for publication in Classical and Quantum Gravit
Area spectrum and quasinormal modes of black holes
We demonstrate that an equidistant area spectrum for the link variables in
loop quantum gravity can reproduce both the thermodynamics and the quasinormal
mode properties of black holes.Comment: 11 pages, no figures; references adde
Commissioning and operation of the Cherenkov detector for proton Flux Measurement of the UA9 Experiment
The UA9 Experiment at CERN-SPS investigates channeling processes in bent
silicon crystals with the aim to manipulate hadron beams. Monitoring and
characterization of channeled beams in the high energy accelerators environment
ideally requires in-vacuum and radiation hard detectors. For this purpose the
Cherenkov detector for proton Flux Measurement (CpFM) was designed and
developed. It is based on thin fused silica bars in the beam pipe vacuum which
intercept charged particles and generate Cherenkov light. The first version of
the CpFM is installed since 2015 in the crystal-assisted collimation setup of
the UA9 experiment. In this paper the procedures to make the detector
operational and fully integrated in the UA9 setup are described. The most
important standard operations of the detector are presented. They have been
used to commission and characterize the detector, providing moreover the
measurement of the integrated channeled beam profile and several functionality
tests as the determination of the crystal bending angle.
The calibration has been performed with Lead (Pb) and Xenon (Xe) beams and
the results are applied to the flux measurement discussed here in detail.Comment: 25 pages, 14 figure
Evaluation of the Casimir Force for a Dielectric-diamagnetic Cylinder with Light Velocity Conservation Condition and the Analogue of Sellmeir's Dispersion Law
We study the Casimir pressure for a dielectric-diamagnetic cylinder subject
to light velocity conservation and with a dispersion law analogous to
Sellmeir's rule. Similarities to and differences from the spherical case are
pointed out.Comment: 19 pages Latex, no figures; discussion expanded. To appear in Physica
Script
The Hawking-Page crossover in noncommutative anti-deSitter space
We study the problem of a Schwarzschild-anti-deSitter black hole in a
noncommutative geometry framework, thought to be an effective description of
quantum-gravitational spacetime. As a first step we derive the noncommutative
geometry inspired Schwarzschild-anti-deSitter solution. After studying the
horizon structure, we find that the curvature singularity is smeared out by the
noncommutative fluctuations. On the thermodynamics side, we show that the black
hole temperature, instead of a divergent behavior at small scales, admits a
maximum value. This fact implies an extension of the Hawking-Page transition
into a van der Waals-like phase diagram, with a critical point at a critical
cosmological constant size in Plank units and a smooth crossover thereafter. We
speculate that, in the gauge-string dictionary, this corresponds to the
confinement "critical point" in number of colors at finite number of flavors, a
highly non-trivial parameter that can be determined through lattice
simulations.Comment: 24 pages, 6 figure, 1 table, version matching that published on JHE
Minimum length effects in black hole physics
We review the main consequences of the possible existence of a minimum
measurable length, of the order of the Planck scale, on quantum effects
occurring in black hole physics. In particular, we focus on the ensuing minimum
mass for black holes and how modified dispersion relations affect the Hawking
decay, both in four space-time dimensions and in models with extra spatial
dimensions. In the latter case, we briefly discuss possible phenomenological
signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black
Holes", ed. X. Calmet (Springer, 2014
- …
