8,745 research outputs found

    A note on supersymmetric Yang-Mills thermodynamics

    Get PDF
    The thermodynamics of supersymmetric Yang-Mills theories is studied by computing the two-loop correction to the canonical free energy and to the equation of state for theories with 16, 8 and 4 supercharges in any dimension 4d104\leq d\leq 10, and in two dimensions at finite volume. In the four-dimensional case we also evaluate the first non-analytic contribution in the 't Hooft coupling to the free energy, arising from the resummation of ring diagrams. To conclude, we discuss some applications to the study of the Hagedorn transition in string theory in the context of Matrix strings and speculate on the possible physical meaning of the transition.Comment: 19 pages, harvmac, epsf. 1 figure included. Minor changes: typos corrected; references, a footonote and a note adde

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    Restrictions on Negative Energy Density in Flat Spacetime

    Full text link
    In a previous paper, a bound on the negative energy density seen by an arbitrary inertial observer was derived for the free massless, quantized scalar field in four-dimensional Minkowski spacetime. This constraint has the form of an uncertainty principle-type limitation on the magnitude and duration of the negative energy density. That result was obtained after a somewhat complicated analysis. The goal of the current paper is to present a much simpler method for obtaining such constraints. Similar ``quantum inequality'' bounds on negative energy density are derived for the electromagnetic field, and for the massive scalar field in both two and four-dimensional Minkowski spacetime.Comment: 17 pages, including two figures, uses epsf, minor revisions in the Introduction, conclusions unchange

    On the construction of model Hamiltonians for adiabatic quantum computation and its application to finding low energy conformations of lattice protein models

    Get PDF
    In this report, we explore the use of a quantum optimization algorithm for obtaining low energy conformations of protein models. We discuss mappings between protein models and optimization variables, which are in turn mapped to a system of coupled quantum bits. General strategies are given for constructing Hamiltonians to be used to solve optimization problems of physical/chemical/biological interest via quantum computation by adiabatic evolution. As an example, we implement the Hamiltonian corresponding to the Hydrophobic-Polar (HP) model for protein folding. Furthermore, we present an approach to reduce the resulting Hamiltonian to two-body terms gearing towards an experimental realization.Comment: 35 pages, 8 figure

    Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order

    Get PDF
    We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]O[(Gm/rc2)2]O[(v/c)^4] \sim O[(Gm/rc^2)^2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat spacetime wave equations. The method cures defects that plagued previous ``brute- force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulae for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.Comment: 59 pages ReVTeX; Physical Review D, in press; figures available on request to [email protected]

    A finite model of two-dimensional ideal hydrodynamics

    Full text link
    A finite-dimensional su(NN) Lie algebra equation is discussed that in the infinite NN limit (giving the area preserving diffeomorphism group) tends to the two-dimensional, inviscid vorticity equation on the torus. The equation is numerically integrated, for various values of NN, and the time evolution of an (interpolated) stream function is compared with that obtained from a simple mode truncation of the continuum equation. The time averaged vorticity moments and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1

    Resonant neutrino spin-flavor precession and supernova shock revival

    Get PDF
    A new mechanism of supernova shock revival is proposed, which involves resonant spin--flavor precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The mechanism can be operative in supernovae for transition magnetic moments as small as 1014μB10^{-14}\mu_B provided the neutrino mass squared difference is in the range Δm2(3  eV)2(600  eV)2\Delta m^2 \sim (3 \;{\rm eV})^2-(600 \;{\rm eV})^2. It is shown that this mechanism can increase the neutrino--induced shock reheating energy by about 60\%.Comment: 16 pages, latex, 2 figures. added few reference
    corecore