1,211 research outputs found

    Breathers on lattices with long range interaction

    Full text link
    We analyze the properties of breathers (time periodic spatially localized solutions) on chains in the presence of algebraically decaying interactions 1/rs1/r^s. We find that the spatial decay of a breather shows a crossover from exponential (short distances) to algebraic (large distances) decay. We calculate the crossover distance as a function of ss and the energy of the breather. Next we show that the results on energy thresholds obtained for short range interactions remain valid for s>3s>3 and that for s<3s < 3 (anomalous dispersion at the band edge) nonzero thresholds occur for cases where the short range interaction system would yield zero threshold values.Comment: 4 pages, 2 figures, PRB Rapid Comm. October 199

    Resonant ratcheting of a Bose-Einstein condensate

    Full text link
    We study the rectification process of interacting quantum particles in a periodic potential exposed to the action of an external ac driving. The breaking of spatio-temporal symmetries leads to directed motion already in the absence of interactions. A hallmark of quantum ratcheting is the appearance of resonant enhancement of the current (Europhys. Lett. 79 (2007) 10007 and Phys. Rev. A 75 (2007) 063424). Here we study the fate of these resonances within a Gross-Pitaevskii equation which describes a mean field interaction between many particles. We find, that the resonance is i) not destroyed by interactions, ii) shifting its location with increasing interaction strength. We trace the Floquet states of the linear equations into the nonlinear domain, and show that the resonance gives rise to an instability and thus to the appearance of new nonlinear Floquet states, whose transport properties differ strongly as compared to the case of noninteracting particles

    Acoustic breathers in two-dimensional lattices

    Full text link
    The existence of breathers (time-periodic and spatially localized lattice vibrations) is well established for i) systems without acoustic phonon branches and ii) systems with acoustic phonons, but also with additional symmetries preventing the occurence of strains (dc terms) in the breather solution. The case of coexistence of strains and acoustic phonon branches is solved (for simple models) only for one-dimensional lattices. We calculate breather solutions for a two-dimensional lattice with one acoustic phonon branch. We start from the easy-to-handle case of a system with homogeneous (anharmonic) interaction potentials. We then easily continue the zero-strain breather solution into the model sector with additional quadratic and cubic potential terms with the help of a generalized Newton method. The lattice size is 70×7070\times 70. The breather continues to exist, but is dressed with a strain field. In contrast to the ac breather components, which decay exponentially in space, the strain field (which has dipole symmetry) should decay like 1/ra,a=21/r^a, a=2. On our rather small lattice we find an exponent a1.85a\approx 1.85

    Slow Relaxation and Phase Space Properties of a Conservative System with Many Degrees of Freedom

    Full text link
    We study the one-dimensional discrete Φ4\Phi^4 model. We compare two equilibrium properties by use of molecular dynamics simulations: the Lyapunov spectrum and the time dependence of local correlation functions. Both properties imply the existence of a dynamical crossover of the system at the same temperature. This correlation holds for two rather different regimes of the system - the displacive and intermediate coupling regimes. Our results imply a deep connection between slowing down of relaxations and phase space properties of complex systems.Comment: 14 pages, LaTeX, 10 Figures available upon request (SF), Phys. Rev. E, accepted for publicatio

    “America’s Nervous Breakdown”: Mary Hartman, Mary Hartman, Popular Psychology, and the Demise of the Housewife in the 1970s

    Get PDF
    In 1976, soap opera satire Mary Hartman, Mary Hartman (MH, MH) debuted and reached an estimated 55 million households. Produced by Norman Lear, the central storyline developed during the first season involved the mental breakdown of Mary Hartman (Louise Lasser), a typical consumer housewife who Lear claimed metaphorically represented the United States. Portraying a discontent housewife with mental illness as a proxy for the nation reflects how ubiquitous popular psychology became in explaining American anxieties over the transformations of the family and politics. An analysis of tape-recorded writers meetings reveals that the show’s creators pulled from contemporary books, theories, and discussions about women’s sexuality to interrogate how media, popular psychology, and consumerism contributed to the decade’s malaise. Letters written to the show also indicate that viewers picked up on this intended message after watching MH, MH and began to question their authenticity as individuals. “America’s nervous breakdown,” therefore, stemmed from everyday people realizing the cold war consensus, which connected consumerism with national strength, had been upended. Historians have focused on the political causes of American fears in the 1970s. This article considers how popular culture presented conflicting ideologies concerning women’s roles and also triggered anxieties among ordinary people

    Localization by entanglement

    Full text link
    We study the localization of bosonic atoms in an optical lattice, which interact in a spatially confined region. The classical theory predicts that there is no localization below a threshold value for the strength of interaction that is inversely proportional to the number of participating atoms. In a full quantum treatment, however, we find that localized states exist for arbitrarily weak attractive or repulsive interactions for any number (>1>1) of atoms. We further show, using an explicit solution of the two-particle bound state and an appropriate measure of entanglement, that the entanglement tends to a finite value in the limit of weak interactions. Coupled with the non-existence of localization in an optimized quantum product state, we conclude that the localization exists by virtue of entanglement.Comment: 6 pages, 4 figures; final published version with small changes in response to reviewer comment

    Localized mode interactions in 0-pi Josephson junctions

    Get PDF
    A long Josephson junction containing regions with a phase shift of pi is considered. By exploiting the defect modes due to the discontinuities present in the system, it is shown that Josephson junctions with phase-shift can be an ideal setting for studying localized mode interactions. A phase-shift configuration acting as a double-well potential is considered and shown to admit mode tunnelings between the wells. When the phase-shift configuration is periodic, it is shown that localized excitations forming bright and dark solitons can be created. Multi-mode approximations are derived confirming the numerical results.Comment: 4 pages, to appear in Phys. Rev.
    corecore