5 research outputs found

    Constructing Fluorogenic Bacillus Spores (F-Spores) via Hydrophobic Decoration of Coat Proteins

    Get PDF
    Background: Bacterial spores are protected by a coat consisting of about 60 different proteins assembled as a biochemically complex structure with intriguing morphological and mechanical properties. Historically, the coat has been considered a static structure providing rigidity and mainly acting as a sieve to exclude exogenous large toxic molecules, such as lytic enzymes. Over recent years, however, new information about the coat’s architecture and function have emerged from experiments using innovative tools such as automated scanning microscopy, and high resolution atomic force microscopy. Principal Findings: Using thin-section electron microscopy, we found that the coat of Bacillus spores has topologically specific proteins forming a layer that is identifiable because it spontaneously becomes decorated with hydrophobic fluorogenic probes from the milieu. Moreover, spores with decorated coat proteins (termed F-spores) have the unexpected attribute of responding to external germination signals by generating intense fluorescence. Fluorescence data from diverse experimental designs, including F-spores constructed from five different Bacilli species, indicated that the fluorogenic ability of F-spores is under control of a putative germination-dependent mechanism. Conclusions: This work uncovers a novel attribute of spore-coat proteins that we exploited to decorate a specific layer imparting germination-dependent fluorogenicity to F-spores. We expect that F-spores will provide a model system to gai

    Hydrophobic core formation in protein complex of cathepsin

    No full text
    The "fuzzy oil drop" model assumes that the idealized hydrophobic core in a protein body can be described by a 3D Gauss function. The structure of the 1ICF protein (cathepsin), which participates in the proteolysis process and has cysteine-type peptidase activity, has been analyzed on the basis of the "fuzzy oil drop" model. The authors have determined the contribution of individual exon fragments to the creation of a common hydrophobic core and assessed the involvement of each chain in this process, depending on the number of complexed chains. Quantitative assessment of exons, chains, dimers, and the whole complex suggest that each of these units plays a different role in shaping the protein’s hydrophobic core

    Possible Overestimation of Surface Disinfection Efficiency by Assessment Methods Based on Liquid Sampling Procedures as Demonstrated by In Situ Quantification of Spore Viability â–ż

    No full text
    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the “damaged/undamaged” status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures
    corecore