2,569 research outputs found

    Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    Get PDF
    The moons surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints

    Coulomb correlation in presence of spin-orbit coupling: application to plutonium

    Full text link
    Attempts to go beyond the local density approximation (LDA) of Density Functional Theory (DFT) have been increasingly based on the incorporation of more realistic Coulomb interactions. In their earliest implementations, methods like LDA+UU, LDA + DMFT (Dynamical Mean Field Theory), and LDA+Gutzwiller used a simple model interaction UU. In this article we generalize the solution of the full Coulomb matrix involving F(0)F^{(0)} to F(6)F^{(6)} parameters, which is usually presented in terms of an â„“mâ„“\ell m_\ell basis, into a jmjjm_{j} basis of the total angular momentum, where we also include spin-orbit coupling; this type of theory is needed for a reliable description of ff-state elements like plutonium, which we use as an example of our theory. Close attention will be paid to spin-flip terms, which are important in multiplet theory but that have been usually neglected in these kinds of studies. We find that, in a density-density approximation, the jmjjm_j basis results provide a very good approximation to the full Coulomb matrix result, in contrast to the much less accurate results for the more conventional â„“mâ„“\ell m_\ell basis

    Atomic excitations during the nuclear {\ss}- decay in light atoms

    Full text link
    Probabilities of various final states are determined numerically for a number of {\ss}- decaying light atoms. In our evaluations of the final state probabilities we have used the highly accurate atomic wave functions constructed for each few-electron atom/ion. We also discuss an experimental possibility to observe negatively charged ions which form during the nuclear {\ss}+ decays. High order corrections to the results obtained for {\ss}+/- decays in few-electron atoms with the use of sudden approximation are considered.Comment: 26 pages, 40 references, 6 tables and 0 figure

    Extragalactic Point Source Search in Five-year WMAP 41, 61 and 94 GHz Maps

    Full text link
    We present the results of an extragalactic point source search using the five-year WMAP 41, 61 and 94 GHz (Q-, V- and W-band) temperature maps. This work is an extension of our point source search in the WMAP maps applying a CMB-free technique. An internal linear combination (ILC) map has been formed from the three-band maps, with the weights chosen to remove the CMB anisotropy signal as well as to favor a selection of flat-spectrum sources. We find 381 sources at the > 5 sigma level outside the WMAP point source detection mask in the ILC map, among which 89 are "new" (i.e., not present in the WMAP catalog). Source fluxes have been calculated and corrected for the Eddington bias. We have solidly identified 367 (96.3%) of our sources. The 1 sigma positional uncertainty is estimated to be 2'. The 14 unidentified sources could be either extended radio structure or obscured by Galactic emission. We have also applied the same detection process on simulated maps and found 364+/-21 detections on average. The recovered source distribution N(>S) agrees well with the simulation input, which proves the reliability of this method.Comment: 28 pages, 9 figures, 2 tables, accepted by Ap

    Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars

    Full text link
    We present first results of a systematic investigation of the incomplete Paschen-Back effect in magnetic Ap stars. A short overview of the theory is followed by a demonstration of how level splittings and component strengths change with magnetic field strength for some lines of special astrophysical interest. Requirements are set out for a code which allows the calculation of full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I and V profiles of transitions in the multiplet 74 of FeII is discussed in some detail. It is shown that the incomplete Paschen-Back effect can lead to noticeable line shifts which strongly depend on total multiplet strength, magnetic field strength and field direction. Ghost components (which violate the normal selection rule on J) show up in strong magnetic fields but are probably unobservable. Finally it is shown that measurements of the integrated magnetic field modulus HsH_s are not adversely affected by the Paschen-Back effect, and that there is a potential problem in (magnetic) Doppler mapping if lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA

    Radio and Mid-infrared Properties of Compact Starbursts: Distancing Themselves from the Main Sequence

    Get PDF
    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 μm polycyclic aromatic hydrocarbon (PAH) emission and 9.7 μm silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 μm PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 μm PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence

    Global Performance Characterization of the Three Burn Trans-Earth Injection Maneuver Sequence over the Lunar Nodal Cycle

    Get PDF
    The Orion spacecraft will be required to perform a three-burn trans-Earth injection (TEI) maneuver sequence to return to Earth from low lunar orbit. The origin of this approach lies in the Constellation Program requirements for access to any lunar landing site location combined with anytime lunar departure. This paper documents the development of optimized databases used to rapidly model the performance requirements of the TEI three-burn sequence for an extremely large number of mission cases. It also discusses performance results for lunar departures covering a complete 18.6 year lunar nodal cycle as well as general characteristics of the optimized three-burn TEI sequence

    Coarse Grained Density Functional Theories for Metallic Alloys: Generalized Coherent Potential Approximations and Charge Excess Functional Theory

    Full text link
    The class of the Generalized Coherent Potential Approximations (GCPA) to the Density Functional Theory (DFT) is introduced within the Multiple Scattering Theory formalism for dealing with, ordered or disordered, metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. The GCPA density functional consists of marginally coupled local contributions, does not depend on the details of the charge density and can be exactly rewritten as a function of the appropriate charge multipole moments associated with each lattice site. A general procedure based on the integration of the 'qV' laws is described that allows for the explicit construction the same function. The coarse grained nature of the GCPA density functional implies great computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the Charge Excess Functional (CEF) theory [E. Bruno, L. Zingales and Y. Wang, Phys. Rev. Lett. {\bf 91}, 166401 (2003)] which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art LAPW full-potential density functional calculations for 62, bcc- and fcc-based, ordered CuZn alloys, in all the range of concentrations. These extensive tests show that the discrepancies between GCPA and CEF are always within the numerical accuracy of the calculations, both for the site charges and the total energies. Furthermore, GCPA and CEF very carefully reproduce the LAPW site charges and the total energy trends.Comment: 19 pages, 11 figure

    Are violations to temporal Bell inequalities there when somebody looks?

    Get PDF
    The possibility of observing violations of temporal Bell inequalities, originally proposed by Leggett as a mean of testing the quantum mechanical delocalization of suitably chosen macroscopic bodies, is discussed by taking into account the effect of the measurement process. A general criterion quantifying this possibility is defined and shown not to be fulfilled by the various experimental configurations proposed so far to test inequalities of different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed in the .tar.gz file; accepted for publication in Europhysics Letter
    • …
    corecore