523 research outputs found

    Philofluid turbulent flow database

    Get PDF
    A set of velocity and passive scalar fields and their statistics coming from direct numerical simulations and large-eddy simulations. The database includes: shearless mixings in two a three dimensions, turbulent channel flow, cavity flow. Username and password to access the netdisks is provided upon request

    Blocking and invasion for reaction–diffusion equations in periodic media

    Get PDF
    We investigate the large time behavior of solutions of reaction–diffusion equations with general reaction terms in periodic media. We first derive some conditions which guarantee that solutions with compactly supported initial data invade the domain. In particular, we relate such solutions with front-like solutions such as pulsating traveling fronts. Next, we focus on the homogeneous bistable equation set in a domain with periodic holes, and specifically on the cases where fronts are not known to exist. We show how the geometry of the domain can block or allow invasion. We finally exhibit a periodic domain on which the propagation takes place in an asymmetric fashion, in the sense that the invasion occurs in a direction but is blocked in the opposite one

    Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Full text link
    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)] we developed the Extrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM

    Generalized principal eigenvalues for heterogeneous road-field systems

    Get PDF
    This paper develops the notion and properties of the generalized principal eigenvalue for an elliptic system coupling an equation in a plane with one on a line in this plane, together with boundary conditions that express exchanges taking place between the plane and the line. This study is motivated by the reaction-diffusion model introduced by Berestycki, Roquejoffre and Rossi [The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol. 66(4-5) (2013) 743-766] to describe the effect on biological invasions of networks with fast diffusion imbedded in a field. Here we study the eigenvalue associated with heterogeneous generalizations of this model. In a forthcoming work [Influence of a line with fast diffusion on an ecological niche, preprint (2018)] we show that persistence or extinction of the associated nonlinear evolution equation is fully accounted for by this generalized eigenvalue. A key element in the proofs is a new Harnack inequality that we establish for these systems and which is of independent interest

    Influence of a road on a population in an ecological niche facing climate change

    Get PDF
    We introduce a model designed to account for the influence of a line with fast diffusion–such as a road or another transport network–on the dynamics of a population in an ecological niche.This model consists of a system of coupled reaction-diffusion equations set on domains with different dimensions (line / plane). We first show that, in a stationary climate, the presence of the line is always deleterious and can even lead the population to extinction. Next, we consider the case where the niche is subject to a displacement, representing the effect of a climate change. We find that in such case the line with fast diffusion can help the population to persist. We also study several qualitative properties of this system. The analysis is based on a notion of generalized principal eigenvalue developed and studied by the authors (2019)

    Dimensionality influence on passive scalar transport

    Get PDF
    We numerically investigate the advection of a passive scalar through an interface placed inside a decaying shearless turbulent mixing layer. We consider the system in both two and three dimensions. The dimensionality produces a different time scaling of the diffusion, which is faster in the two-dimensional case. Two intermittent fronts are generated at the margins of the mixing layer. During the decay these fronts present a sort of propagation in both the direction of the scalar flow and the opposite direction. In two dimensions, the propagation of the fronts exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the front merged in the high energy side of the mixing. In three dimensions, the two fronts remain nearly symmetrically placed. Results concerning the scalar spectra exponents are also presented

    "Philofluid" turbulent flow database

    Get PDF
    A set of velocity and passive scalar fields and their statistics coming from direct numerical simulations and large-eddy simulations. The database includes: shearless mixings in two a three dimensions, turbulent channel flow, cavity flow. Username and password to access the netdisks is provided upon request

    A Cluster Approach for the modelling of the layer-by-layer growth of SiC polytypes

    Get PDF
    10 pagesInternational audienceA cluster approach has been designed in order to confirm the physical bases of a previously presented dynamical model for chemical vapor deposition-chemical vapor infiltration SiC growth (Vignoles, G. L. J. Cryst. Growth 1992, 118, 430). The clusters consist of two or three Si-C bilayers; the relaxation of the bond lengths in the upper bilayer of the clusters simulates the impingement of a new bilayer on the crystal surface. The quantities relevant to the model (energies and optimized geometries) have been calculated at the semiempirical level. The use of regular series of clusters allowed us to obtain extrapolated values for infinite surfaces. Qualitative agreement has been obtained between the cluster calculations and the assumptions made for the dynamical model

    Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System

    Full text link
    We use the density matrix renormalization group (DMRG) to map out the ground state of a XY-spin chain coupled to dispersionless phonons of frequency ω% \omega . We confirm the existence of a critical spin-phonon coupling c∝ω0.7% \alpha _c\propto \omega ^{0.7} for the onset of the spin gap bearing the signature of a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover when the spin-Peierls gap Δ\Delta is of order % \omega . In the classical regime, Δ>ω\Delta >\omega , the mean-field parameters are strongly renormalized by non-adiabatic corrections. This is the first application of the DMRG to phonons.Comment: 10 pages, 5 figures. To be published in PR

    Insulator-Metal Transition in One Dimension Induced by Long-Range Electronic Interactions

    Full text link
    The effects of a long range electronic potential on a one dimensional commensurate Charge Density Wave (CDW) state are investigated. Using numerical techniques it is shown that a transition to a metallic ground state is reached as the range of the electron-electron repulsion increases. In this metallic state, the optical conductivity exhibits a large Drude weight. Possible interpretations of our results are discussed.Comment: 5 pages, Revtex, minor misprints corrected and a reference to earlier work by V. Emery and C. Noguera adde
    • 

    corecore