77 research outputs found

    On fractionality of the path packing problem

    Full text link
    In this paper, we study fractional multiflows in undirected graphs. A fractional multiflow in a graph G with a node subset T, called terminals, is a collection of weighted paths with ends in T such that the total weights of paths traversing each edge does not exceed 1. Well-known fractional path packing problem consists of maximizing the total weight of paths with ends in a subset S of TxT over all fractional multiflows. Together, G,T and S form a network. A network is an Eulerian network if all nodes in N\T have even degrees. A term "fractionality" was defined for the fractional path packing problem by A. Karzanov as the smallest natural number D so that there exists a solution to the problem that becomes integer-valued when multiplied by D. A. Karzanov has defined the class of Eulerian networks in terms of T and S, outside which D is infinite and proved that whithin this class D can be 1,2 or 4. He conjectured that D should be 1 or 2 for this class of networks. In this paper we prove this conjecture.Comment: 18 pages, 5 figures in .eps format, 2 latex files, main file is kc13.tex Resubmission due to incorrectly specified CS type of the article; no changes to the context have been mad

    Notions of Connectivity in Overlay Networks

    Get PDF
    International audience" How well connected is the network? " This is one of the most fundamental questions one would ask when facing the challenge of designing a communication network. Three major notions of connectivity have been considered in the literature, but in the context of traditional (single-layer) networks, they turn out to be equivalent. This paper introduces a model for studying the three notions of connectivity in multi-layer networks. Using this model, it is easy to demonstrate that in multi-layer networks the three notions may differ dramatically. Unfortunately, in contrast to the single-layer case, where the values of the three connectivity notions can be computed efficiently, it has been recently shown in the context of WDM networks (results that can be easily translated to our model) that the values of two of these notions of connectivity are hard to compute or even approximate in multi-layer networks. The current paper shed some positive light into the multi-layer connectivity topic: we show that the value of the third connectivity notion can be computed in polynomial time and develop an approximation for the construction of well connected overlay networks

    A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4-d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor

    Get PDF
    20siopenOverexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.openFallacara, Anna Lucia; Zamperini, Claudio; Podolski-Renić, Ana; Dinić, Jelena; Stanković, Tijana; Stepanović, Marija; Mancini, Arianna; Rango, Enrico; Iovenitti, Giulia; Molinari, Alessio; Bugli, Francesca; Sanguinetti, Maurizio; Torelli, Riccardo; Martini, Maurizio; Maccari, Laura; Valoti, Massimo; Dreassi, Elena; Botta, Maurizio; Peơić, Milica; Schenone, SilviaFallacara, Anna Lucia; Zamperini, Claudio; Podolski-Renić, Ana; Dinić, Jelena; Stanković, Tijana; Stepanović, Marija; Mancini, Arianna; Rango, Enrico; Iovenitti, Giulia; Molinari, Alessio; Bugli, Francesca; Sanguinetti, Maurizio; Torelli, Riccardo; Martini, Maurizio; Maccari, Laura; Valoti, Massimo; Dreassi, Elena; Botta, Maurizio; Peơić, Milica; Schenone, Silvi

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore