4,629 research outputs found
Modelling diffusion in crystals under high internal stress gradients
Diffusion of vacancies and impurities in metals is important in many processes occurring in structural materials. This diffusion often takes place in the presence of spatially rapidly varying stresses. Diffusion under stress is frequently modelled by local approximations to the vacancy formation and diffusion activation enthalpies which are linear in the stress, in order to account for its dependence on the local stress state and its gradient. Here, more accurate local approximations to the vacancy formation and diffusion activation enthalpies, and the simulation methods needed to implement them, are introduced. The accuracy of both these approximations and the linear approximations are assessed via comparison to full atomistic studies for the problem of vacancies around a Lomer dislocation in Aluminium. Results show that the local and linear approximations for the vacancy formation enthalpy and diffusion activation enthalpy are accurate to within 0.05 eV outside a radius of about 13 Å (local) and 17 Å (linear) from the centre of the dislocation core or, more generally, for a strain gradient of roughly up to 6 × 10^6 m^-1 and 3 × 10^6 m^-1, respectively. These results provide a basis for the development of multiscale models of diffusion under highly non-uniform stress
Examining Mental Health and Well-being Provision in Schools in Europe: Methodological Approach
Schools are considered an ideal setting for community-based mental health and well-being interventions for young people. However, in spite of extensive literature examining the effectiveness of such interventions, very few studies have investigated existing mental health and well-being provision in schools. The current study aims to extend such previous research by surveying primary and secondary schools to investigate the nature of available provision in nine European countries (Germany, Ireland, the Netherlands, Poland, Serbia, Spain, Sweden, the UK and Ukraine). Furthermore, the study aims to investigate potential barriers to mental health and well-being provision and compare provision within and between countries
Weighted-density approximation for general nonuniform fluid mixtures
In order to construct a general density-functional theory for nonuniform
fluid mixtures, we propose an extension to multicomponent systems of the
weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32,
2909 (1985)]. This extension corrects a deficiency in a similar extension
proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that
that functional cannot be applied to the multi-component nonuniform fluid
systems with spatially varying composition, such as solid-fluid interfaces. As
a test of the accuracy of our new functional, we apply it to the calculation of
the freezing phase diagram of a binary hard-sphere fluid, and compare the
results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor
Tree-Independent Dual-Tree Algorithms
Dual-tree algorithms are a widely used class of branch-and-bound algorithms.
Unfortunately, developing dual-tree algorithms for use with different trees and
problems is often complex and burdensome. We introduce a four-part logical
split: the tree, the traversal, the point-to-point base case, and the pruning
rule. We provide a meta-algorithm which allows development of dual-tree
algorithms in a tree-independent manner and easy extension to entirely new
types of trees. Representations are provided for five common algorithms; for
k-nearest neighbor search, this leads to a novel, tighter pruning bound. The
meta-algorithm also allows straightforward extensions to massively parallel
settings.Comment: accepted in ICML 201
Bursts in a fiber bundle model with continuous damage
We study the constitutive behaviour, the damage process, and the properties
of bursts in the continuous damage fiber bundle model introduced recently.
Depending on its two parameters, the model provides various types of
constitutive behaviours including also macroscopic plasticity. Analytic results
are obtained to characterize the damage process along the plastic plateau under
strain controlled loading, furthermore, for stress controlled experiments we
develop a simulation technique and explore numerically the distribution of
bursts of fiber breaks assuming infinite range of interaction. Simulations
revealed that under certain conditions power law distribution of bursts arises
with an exponent significantly different from the mean field exponent 5/2. A
phase diagram of the model characterizing the possible burst distributions is
constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio
Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data
A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111)
by fitting to ab initio data. The fitting database consists of DFT calculations
of Cu monomers and dimers on Ag(111), specifically their relative energies,
adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM
potential and first modify the Cu-Ag pair potential to match the FCC/HCP site
energy difference then include Cu-Cu pair potential optimization for the entire
database. The optimized EAM potential reproduce DFT monomer and dimer relative
energies and geometries correctly. In trimer calculations, the potential
produces the DFT relative energy between FCC and HCP trimers, though a
different ground state is predicted. We use the optimized potential to
calculate diffusion barriers for Cu monomers, dimers, and trimers. The
predicted monomer barrier is the same as DFT, while experimental barriers for
monomers and dimers are both lower than predicted here. We attribute the
difference with experiment to the overestimation of surface adsorption energies
by DFT and a simple correction is presented. Our results show that the
optimized Cu-Ag EAM can be applied in the study of larger Cu islands on
Ag(111).Comment: 15 pages, 7 figure
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis
Muscle dysfunction is a common feature of severe sepsis and multi-organ failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP-3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit ROS production. Using a murine model, we examined metabolic, cardiovascular and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Mitochondrial membrane potential was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP-3 protein abundance at 24 hours, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and phosphorylation pathway. However, UCP-3 does not play an important functional role, despite its upregulation
Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator–prey pairs, lion–zebra and cheetah–impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator–prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate
- …
