30 research outputs found

    A Theory of Entangled Polymers

    No full text

    Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species

    No full text
    1. Hydroxychavicol (HC; 10 – 50 μM), a betel leaf component, was found to suppress the 2% H(2)O(2)-induced lucigenin chemiluminescence for 53 – 75%. HC (0.02 – 2 μM) was also able to trap superoxide radicals generated by a xanthine/xanthine oxidase system with 38 – 94% of inhibition. Hydroxyl radicals-induced PUC18 plasmid DNA breaks was prevented by HC (1.6 – 16 μM). 2. A 24-h exposure of KB cells to HC (0.5, 1 mM) resulted in 54 – 74% cell death as analysed by a 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. HC (10, 50 μM) further suppressed the growth of KB cells (15 and 76%, respectively). Long-term colony formation of KB cells was inhibited by 51% with 10 μM HC. 3. Pretreatment of KB cells with 100 μM HC inhibited the attachment of KB cells to type I collagen and fibronectin by 59 and 29%, respectively. 4. Exposure of KB cells to 0.1 mM HC for 24 h resulted in cell cycle arrest at late S and G2/M phase. Increasing the HC concentration to 0.25 and 0.5 mM led to apoptosis as revealed by detection of sub-G(0)/G(1) peaks with a concomitant decrease in the number of cells residing in late S and G(2)/M phase. 5. Inducing the apoptosis of KB cells by HC was accompanied by marked depletion in reduced form of GSH (>0.2 mM) and the increasing of reactive oxygen species production (>0.1 mM) as analysed by CMF- and DCF-single cell fluorescence flow cytometry. 6. These results indicate that HC exerts antioxidant property at low concentration. HC also inhibits the growth, adhesion and cell cycle progression of KB cells, whereas its induction of KB cell apoptosis (HC>0.1 mM) was accompanied by cellular redox changes

    Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome

    No full text
    Monogenic neurodevelopmental disorders provide key insights into the pathogenesis of disease and help us understand how specific genes control the development of the human brain. Timothy syndrome is caused by a missense mutation in the L-type calcium channel Ca(v)1.2 that is associated with developmental delay and autism. We generated cortical neuronal precursor cells and neurons from induced pluripotent stem cells derived from individuals with Timothy syndrome. Cells from these individuals have defects in calcium (Ca(2+)) signaling and activity-dependent gene expression. They also show abnormalities in differentiation, including decreased expression of genes that are expressed in lower cortical layers and in callosal projection neurons. In addition, neurons derived from individuals with Timothy syndrome show abnormal expression of tyrosine hydroxylase and increased production of norepinephrine and dopamine. This phenotype can be reversed by treatment with roscovitine, a cyclin-dependent kinase inhibitor and atypical L-type-channel blocker. These findings provide strong evidence that Ca(v)1.2 regulates the differentiation of cortical neurons in humans and offer new insights into the causes of autism in individuals with Timothy syndrome
    corecore