477 research outputs found

    Investigation on Thin Film Lithium Microbatteries

    Get PDF
    Thin film lithium microbatteries were investigated in this project in which LiCoO₂ cathodes about 200 to 500 nm were fabricated by pulsed-laser deposition (PLD) at different processing parameters such as laser energy and fluence, substrate temperature, background gas pressure, and target-substrate distance. Structure, microstructure and composition of as-deposited LiCoO₂ films were determined by XRD, SEM and XPS. Optimal deposition parameters were identified. Relaxation of open-circuit voltage of as-prepared cells and charge-discharge cycling were conducted to characterize the electrochemical properties of microbatteries made of these LiCoO₂ films.Singapore-MIT Alliance (SMA

    Solid State Thin Film Lithium Microbatteries

    Get PDF
    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse duration, laser pulse frequency, target composition, background gasses, substrate temperature, target-substrate distance and orientation. The effects of the variations of the process parameters can be obtained by measuring stoichiometry, thickness, phases and structure (grain size and texture), and stress of the deposited films. Electrochemical measurements will be conducted to test the microbattery properties through open-circuit voltage, charge-discharge cycling, cyclic voltammetry, and impedance analysis.Singapore-MIT Alliance (SMA

    Ternary Nitride Semiconductors in the Rocksalt Crystal Structure

    Get PDF
    Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optoelectronic devices. In contrast, rocksalt-based nitrides are known for their metallic and refractory properties. Breaking this dichotomy, here we report on ternary nitride semiconductors with rocksalt crystal structures, remarkable optoelectronic properties, and the general chemical formula Mgx_{x}TM1x_{1-x}N (TM=Ti, Zr, Hf, Nb). These compounds form over a broad metal composition range and our experiments show that Mg-rich compositions are nondegenerate semiconductors with visible-range optical absorption onsets (1.8-2.1 eV). Lattice parameters are compatible with growth on a variety of substrates, and epitaxially grown MgZrN2_{2} exhibits remarkable electron mobilities approaching 100 cm2^{2}V1^{-1}s1^{-1}. Ab initio calculations reveal that these compounds have disorder-tunable optical properties, large dielectric constants and low carrier effective masses that are insensitive to disorder. Overall, these experimental and theoretical results highlight MgG3_{G-3}TMNG2_{G-2} rocksalts as a new class of semiconductor materials with promising properties for optoelectronic applications

    First-principles study of iron oxyfluorides and lithiation of FeOF

    Get PDF
    First-principles studies of iron oxyfluorides in the FeF[subscript 2] rutile framework (FeO[subscript x]F[subscript 2−x], 0≤x≤1) are performed using density functional theory (DFT) in the general gradient approximation (GGA) with a Hubbard U correction. Studies of O/F orderings reveal FeOF to be particularly stable compared to other FeO[subscript x]F[subscript 2−x] (x≠1) structures, where FeF[subscript 2]-FeOF mixing is not energetically favored. The band gap of FeF[subscript 2] is found to decrease as oxygen is substituted into its structure. The GGA + U electronic structure evolves from that of a Mott-Hubbard insulator (x=0) to a charge transfer semiconductor (x=1). Lithiation studies reveal that lithiation sites offering mixed O/F environments are the most stable. An insertion voltage plateau up to Li[subscript 0.5]FeOF on lithiation is found, in agreement with recent Li-ion battery experiments. The energetics of further lithiation with respect to conversion scenarios are discussed.United States. Dept. of Energy. Office of Basic Energy Sciences (Northeastern Center for Chemical Energy Storage Award DE-SC0001294

    Dynamic of a non homogeneously coarse grained system

    Full text link
    To study materials phenomena simultaneously at various length scales, descriptions in which matter can be coarse grained to arbitrary levels, are necessary. Attempts to do this in the static regime (i.e. zero temperature) have already been developed. In this letter, we present an approach that leads to a dynamics for such coarse-grained models. This allows us to obtain temperature-dependent and transport properties. Renormalization group theory is used to create new local potentials model between nodes, within the approximation of local thermodynamical equilibrium. Assuming that these potentials give an averaged description of node dynamics, we calculate thermal and mechanical properties. If this method can be sufficiently generalized it may form the basis of a Molecular Dynamics method with time and spatial coarse-graining.Comment: 4 pages, 4 figure

    Non-ohmicity and energy relaxation in diffusive 2D metals

    Full text link
    We analyze current-voltage characteristics taken on Au-doped indium-oxide films. By fitting a scaling function to the data, we extract the electron-phonon scattering rate as function of temperature, which yields a quadratic dependence of the electron-phonon scattering rate on temperature from 1K down to 0.28K. The origin of this enhanced electron-phonon scattering rate is ascribed to the mechanism proposed by Sergeev and Mitin.Comment: 7 pages, 6 figure

    CVM studies on the atomic ordering in complex perovskite alloys

    Full text link
    The atomic ordering in complex perovskite alloys is investigated by the cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the order-disorder phase transition is the first order, and the order parameter of the 1:2 complex perovskite reaches its maximum near x=0.25. For the 1/2\{111\}-type ordered structure, the ordering transition is the second order. Phase diagrams for both ordered structures are obtained. The order-disorder line obeys the linear law.Comment: 10 pages, 6 figure

    Deterministic approach to microscopic three-phase traffic theory

    Full text link
    Two different deterministic microscopic traffic flow models, which are in the context of the Kerner's there-phase traffic theory, are introduced. In an acceleration time delay model (ATD-model), different time delays in driver acceleration associated with driver behaviour in various local driving situations are explicitly incorporated into the model. Vehicle acceleration depends on local traffic situation, i.e., whether a driver is within the free flow, or synchronized flow, or else wide moving jam traffic phase. In a speed adaptation model (SA-model), vehicle speed adaptation occurs in synchronized flow depending on driving conditions. It is found that the ATD- and SA-models show spatiotemporal congested traffic patterns that are adequate with empirical results. In the ATD- and SA-models, the onset of congestion in free flow at a freeway bottleneck is associated with a first-order phase transition from free flow to synchronized flow; moving jams emerge spontaneously in synchronized flow only. Differences between the ATD- and SA-models are studied. A comparison of the ATD- and SA-models with stochastic models in the context of three phase traffic theory is made. A critical discussion of earlier traffic flow theories and models based on the fundamental diagram approach is presented.Comment: 40 pages, 14 figure

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table
    corecore