477 research outputs found
Investigation on Thin Film Lithium Microbatteries
Thin film lithium microbatteries were investigated in this project in which LiCoO₂ cathodes about 200 to 500 nm were fabricated by pulsed-laser deposition (PLD) at different processing parameters such as laser energy and fluence, substrate temperature, background gas pressure, and target-substrate distance. Structure, microstructure and composition of as-deposited LiCoO₂ films were determined by XRD, SEM and XPS. Optimal deposition parameters were identified. Relaxation of open-circuit voltage of as-prepared cells and charge-discharge cycling were conducted to characterize the electrochemical properties of microbatteries made of these LiCoO₂ films.Singapore-MIT Alliance (SMA
Solid State Thin Film Lithium Microbatteries
Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse duration, laser pulse frequency, target composition, background gasses, substrate temperature, target-substrate distance and orientation. The effects of the variations of the process parameters can be obtained by measuring stoichiometry, thickness, phases and structure (grain size and texture), and stress of the deposited films. Electrochemical measurements will be conducted to test the microbattery properties through open-circuit voltage, charge-discharge cycling, cyclic voltammetry, and impedance analysis.Singapore-MIT Alliance (SMA
Ternary Nitride Semiconductors in the Rocksalt Crystal Structure
Inorganic nitrides with wurtzite crystal structures are well-known
semiconductors used in optoelectronic devices. In contrast, rocksalt-based
nitrides are known for their metallic and refractory properties. Breaking this
dichotomy, here we report on ternary nitride semiconductors with rocksalt
crystal structures, remarkable optoelectronic properties, and the general
chemical formula MgTMN (TM=Ti, Zr, Hf, Nb). These compounds form
over a broad metal composition range and our experiments show that Mg-rich
compositions are nondegenerate semiconductors with visible-range optical
absorption onsets (1.8-2.1 eV). Lattice parameters are compatible with growth
on a variety of substrates, and epitaxially grown MgZrN exhibits
remarkable electron mobilities approaching 100 cmVs. Ab
initio calculations reveal that these compounds have disorder-tunable optical
properties, large dielectric constants and low carrier effective masses that
are insensitive to disorder. Overall, these experimental and theoretical
results highlight MgTMN rocksalts as a new class of
semiconductor materials with promising properties for optoelectronic
applications
First-principles study of iron oxyfluorides and lithiation of FeOF
First-principles studies of iron oxyfluorides in the FeF[subscript 2] rutile framework (FeO[subscript x]F[subscript 2−x], 0≤x≤1) are performed using density functional theory (DFT) in the general gradient approximation (GGA) with a Hubbard U correction. Studies of O/F orderings reveal FeOF to be particularly stable compared to other FeO[subscript x]F[subscript 2−x] (x≠1) structures, where FeF[subscript 2]-FeOF mixing is not energetically favored. The band gap of FeF[subscript 2] is found to decrease as oxygen is substituted into its structure. The GGA + U electronic structure evolves from that of a Mott-Hubbard insulator (x=0) to a charge transfer semiconductor (x=1). Lithiation studies reveal that lithiation sites offering mixed O/F environments are the most stable. An insertion voltage plateau up to Li[subscript 0.5]FeOF on lithiation is found, in agreement with recent Li-ion battery experiments. The energetics of further lithiation with respect to conversion scenarios are discussed.United States. Dept. of Energy. Office of Basic Energy Sciences (Northeastern Center for Chemical Energy Storage Award DE-SC0001294
Dynamic of a non homogeneously coarse grained system
To study materials phenomena simultaneously at various length scales,
descriptions in which matter can be coarse grained to arbitrary levels, are
necessary. Attempts to do this in the static regime (i.e. zero temperature)
have already been developed. In this letter, we present an approach that leads
to a dynamics for such coarse-grained models. This allows us to obtain
temperature-dependent and transport properties. Renormalization group theory is
used to create new local potentials model between nodes, within the
approximation of local thermodynamical equilibrium. Assuming that these
potentials give an averaged description of node dynamics, we calculate thermal
and mechanical properties. If this method can be sufficiently generalized it
may form the basis of a Molecular Dynamics method with time and spatial
coarse-graining.Comment: 4 pages, 4 figure
Non-ohmicity and energy relaxation in diffusive 2D metals
We analyze current-voltage characteristics taken on Au-doped indium-oxide
films. By fitting a scaling function to the data, we extract the
electron-phonon scattering rate as function of temperature, which yields a
quadratic dependence of the electron-phonon scattering rate on temperature from
1K down to 0.28K. The origin of this enhanced electron-phonon scattering rate
is ascribed to the mechanism proposed by Sergeev and Mitin.Comment: 7 pages, 6 figure
CVM studies on the atomic ordering in complex perovskite alloys
The atomic ordering in complex perovskite alloys is investigated by the
cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the
order-disorder phase transition is the first order, and the order parameter of
the 1:2 complex perovskite reaches its maximum near x=0.25. For the
1/2\{111\}-type ordered structure, the ordering transition is the second order.
Phase diagrams for both ordered structures are obtained. The order-disorder
line obeys the linear law.Comment: 10 pages, 6 figure
Deterministic approach to microscopic three-phase traffic theory
Two different deterministic microscopic traffic flow models, which are in the
context of the Kerner's there-phase traffic theory, are introduced. In an
acceleration time delay model (ATD-model), different time delays in driver
acceleration associated with driver behaviour in various local driving
situations are explicitly incorporated into the model. Vehicle acceleration
depends on local traffic situation, i.e., whether a driver is within the free
flow, or synchronized flow, or else wide moving jam traffic phase. In a speed
adaptation model (SA-model), vehicle speed adaptation occurs in synchronized
flow depending on driving conditions. It is found that the ATD- and SA-models
show spatiotemporal congested traffic patterns that are adequate with empirical
results. In the ATD- and SA-models, the onset of congestion in free flow at a
freeway bottleneck is associated with a first-order phase transition from free
flow to synchronized flow; moving jams emerge spontaneously in synchronized
flow only. Differences between the ATD- and SA-models are studied. A comparison
of the ATD- and SA-models with stochastic models in the context of three phase
traffic theory is made. A critical discussion of earlier traffic flow theories
and models based on the fundamental diagram approach is presented.Comment: 40 pages, 14 figure
Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}
Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied
during room temperature annealing following heat treatment. The superconducting
T_c, dc resistivity, and low-energy optical conductivity recover slowly,
implying a long relaxation time for the carrier density. Short relaxation times
are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon
-- and the charge transfer band. Monte Carlo simulations suggest that these two
relaxation rates are related to two length scales corresponding to local oxygen
ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure
Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys
A model is tested to rapidly evaluate the vibrational properties of alloys
with site disorder. It is shown that length-dependent transferable force
constants exist, and can be used to accurately predict the vibrational entropy
of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and
Cu-Pd. For each relevant force constant, a length- dependent function is
determined and fitted to force constants obtained from first-principles
pseudopotential calculations. We show that these transferable force constants
can accurately predict vibrational entropies of L1-ordered and disordered
phases in CuAu, AuPd, PdAu, CuPd, and PdAu. In
addition, we calculate the vibrational entropy difference between
L1-ordered and disordered phases of AuCu and CuPt.Comment: 9 pages, 6 figures, 3 table
- …
