123 research outputs found

    On the Role of Viscosity in Early Cosmology

    Full text link
    We present a discussion of the effects induced by bulk viscosity on the very early Universe stability. The viscosity coefficient is assumed to be related to the energy density ρ\rho via a power-law of the form ζ=ζ0ρs\zeta=\zeta_0 \rho^s (where ζ0,s=const.\zeta_0, s=const.) and the behavior of the density contrast in analyzed. In particular, we study both Einstein and hydrodynamic equations up to first and second order in time in the so-called quasi-isotropic collapsing picture near the cosmological singularity. As a result, we get a power-law solution existing only in correspondence to a restricted domain of ζ0\zeta_0. The particular case of pure isotropic FRW dynamics is then analyzed and we show how the asymptotic approach to the initial singularity admits an unstable collapsing picture.Comment: 4 pages, no figur

    Structure of force networks in tapped particulate systems of disks and pentagons. II. Persistence analysis

    Get PDF
    In the companion paper [Pugnaloni, Phys. Rev. E 93, 062902 (2016)10.1103/PhysRevE.93.062902], we use classical measures based on force probability density functions (PDFs), as well as Betti numbers (quantifying the number of components, related to force chains, and loops), to describe the force networks in tapped systems of disks and pentagons. In the present work, we focus on the use of persistence analysis, which allows us to describe these networks in much more detail. This approach allows us not only to describe but also to quantify the differences between the force networks in different realizations of a system, in different parts of the considered domain, or in different systems. We show that persistence analysis clearly distinguishes the systems that are very difficult or impossible to differentiate using other means. One important finding is that the differences in force networks between disks and pentagons are most apparent when loops are considered: the quantities describing properties of the loops may differ significantly even if other measures (properties of components, Betti numbers, force PDFs, or the stress tensor) do not distinguish clearly or at all the investigated systems.Instituto de Física de Líquidos y Sistemas Biológico

    Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops

    Get PDF
    The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic, Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.Instituto de Física de Líquidos y Sistemas Biológico

    The Jeans Instability in Presence of Viscous Effects

    Full text link
    An analysis of the gravitational instability in presence of dissipative effects is addressed. In particular, the standard Jeans Mechanism and the generalization in treating the Universe expansion are both analyzed when bulk viscosity affects the first-order Newtonian dynamics. As results, the perturbation evolution is founded to be damped by dissipative processes and the top-down mechanism of structure fragmentation is suppressed. In such a scheme, the value of the Jeans Mass remains unchanged also in presence of viscosity.Comment: 13 pages, 2 figure

    Intruder in a two-dimensional granular system: statics and dynamics of force networks in an experimental system experiencing stick-slip dynamics

    Full text link
    In quasi-two-dimensional experiments with photoelastic particles confined to an annular region, an intruder constrained to move in a circular path halfway between the annular walls experiences stick-slip dynamics. We discuss the response of the granular medium to the driven intruder, focusing on the evolution of the force network during sticking periods. Because the available experimental data does not include precise information about individual contact forces, we use an approach developed in our previous work (Basak et al, J. Eng. Mechanics (2021)) based on networks constructed from measurements of the integrated strain magnitude on each particle. These networks are analyzed using topological measures based on persistence diagrams, revealing that force networks evolve smoothly but in a nontrivial manner throughout each sticking period, even though the intruder and granular particles are stationary. Characteristic features of persistence diagrams show identifiable changes as a slip is approaching, indicating the existence of slip precursors. Key features of the dynamics are similar for granular materials composed of disks or pentagons, but some details are consistently different. In particular, we find significantly larger fluctuations of the measures computed based on persistence diagrams, and therefore of the underlying networks, for systems of pentagonal particles

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    Bulk Viscosity Effects on the Early Universe Stability

    Full text link
    We present a discussion of the effects induced by the bulk viscosity on the very early Universe stability. The matter filling the cosmological (isotropic and homogeneous) background is described by a viscous fluid having an ultrarelativistic equation of state and whose viscosity coefficient is related to the energy density via a power-law of the form ζ=ζ0ρν\zeta=\zeta_0 \rho^\nu. The analytic expression of the density contrast (obtained for ν=1/2\nu=1/2) shows that, for small values of the constant ζ0\zeta_0, its behavior is not significantly different from the non-viscous one derived by E.M. Lifshitz. But as soon as ζ0\zeta_0 overcomes a critical value, the growth of the density contrast is suppressed forward in time by the viscosity and the stability of the Universe is favored in the expanding picture. On the other hand, in such a regime, the asymptotic approach to the initial singularity (taken at t=0t=0) is deeply modified by the apparency of significant viscosity in the primordial thermal bath i.e. the isotropic and homogeneous Universe admits an unstable collapsing picture. In our model this feature regards also scalar perturbations while in the non-viscous case it appears only for tensor modes.Comment: 8 pages, no figur

    Self-collimated axial jets seeds from thin accretion disks

    Full text link
    We show how an appropriate stationary crystalline structure of the magnetic field can induce a partial fragmentation of the accretion disk, generating an axial jet seed composed of hot plasma twisted in a funnel-like structure due to the rotation of the system. The most important feature we outline is the high degree of collimation, naturally following from the basic assumptions underlying the crystalline structure. The presence of non-zero dissipative effects allows the plasma ejection throughout the axial jet seed and the predicted values of the accretion rate are in agreement with observations.Comment: 8 pages, 7 figure
    corecore