499 research outputs found

    Deformations of extended objects with edges

    Full text link
    We present a manifestly gauge covariant description of fluctuations of a relativistic extended object described by the Dirac-Nambu-Goto action with Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas physical fluctuations of the bulk lie normal to its worldsheet, those on the edge possess an additional component directed into the bulk. These fluctuations couple in a non-trivial way involving the underlying geometrical structures associated with the worldsheet of the object and of its edge. We illustrate the formalism using as an example a string with massive point particles attached to its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5

    Towards a path integral for the pure-spin connection formulation of gravity

    Full text link
    A proposal for the path-integral of pure-spin-connection formulation of gravity is described, based on the two-form formulation of Capovilla et. al. It is shown that the resulting effective-action for the spin-connection, upon functional integration of the two-form field Σ\Sigma and the auxiliary matrix field ψ\psi is {\it non-polynomial}, even for the case of vanishing cosmological constant and absence of any matter couplings. Further, a diagramatic evaluation is proposed for the contribution of the matrix-field to the pure spin connection action.Comment: 8 pages in plain-TeX.-----IUCAA_TH/9

    Stresses in lipid membranes

    Full text link
    The stresses in a closed lipid membrane described by the Helfrich hamiltonian, quadratic in the extrinsic curvature, are identified using Noether's theorem. Three equations describe the conservation of the stress tensor: the normal projection is identified as the shape equation describing equilibrium configurations; the tangential projections are consistency conditions on the stresses which capture the fluid character of such membranes. The corresponding torque tensor is also identified. The use of the stress tensor as a basis for perturbation theory is discussed. The conservation laws are cast in terms of the forces and torques on closed curves. As an application, the first integral of the shape equation for axially symmetric configurations is derived by examining the forces which are balanced along circles of constant latitude.Comment: 16 pages, introduction rewritten, other minor changes, new references added, version to appear in Journal of Physics

    Remarks on Conserved Quantities and Entropy of BTZ Black Hole Solutions. Part II: BCEA Theory

    Full text link
    The BTZ black hole solution for (2+1)-spacetime is considered as a solution of a triad-affine theory (BCEA) in which topological matter is introduced to replace the cosmological constant in the model. Conserved quantities and entropy are calculated via Noether theorem, reproducing in a geometrical and global framework earlier results found in the literature using local formalisms. Ambiguities in global definitions of conserved quantities are considered in detail. A dual and covariant Legendre transformation is performed to re-formulate BCEA theory as a purely metric (natural) theory (BCG) coupled to topological matter. No ambiguities in the definition of mass and angular momentum arise in BCG theory. Moreover, gravitational and matter contributions to conserved quantities and entropy are isolated. Finally, a comparison of BCEA and BCG theories is carried out by relying on the results obtained in both theories.Comment: PlainTEX, 20 page

    Hamiltonian dynamics of extended objects

    Full text link
    We consider a relativistic extended object described by a reparametrization invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behavior under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations shown to be consistent with the Euler-Lagrange equations.Comment: 24 pages, late

    so(4) Plebanski Action and Relativistic Spin Foam Model

    Get PDF
    In this note we study the correspondence between the ``relativistic spin foam'' model introduced by Barrett, Crane and Baez and the so(4) Plebanski action. We argue that the so(4)so(4) Plebanski model is the continuum analog of the relativistic spin foam model. We prove that the Plebanski action possess four phases, one of which is gravity and outline the discrepancy between this model and the model of Euclidean gravity. We also show that the Plebanski model possess another natural dicretisation and can be associate with another, new, spin foam model that appear to be the so(4)so(4) counterpart of the spin foam model describing the self dual formulation of gravity.Comment: 12 pages, REVTeX using AMS fonts. Some minor corrections and improvement

    Second variation of the Helfrich-Canham Hamiltonian and reparametrization invariance

    Get PDF
    A covariant approach towards a theory of deformations is developed to examine both the first and second variation of the Helfrich-Canham Hamiltonian -- quadratic in the extrinsic curvature -- which describes fluid vesicles at mesoscopic scales. Deformations are decomposed into tangential and normal components; At first order, tangential deformations may always be identified with a reparametrization; at second order, they differ. The relationship between tangential deformations and reparametrizations, as well as the coupling between tangential and normal deformations, is examined at this order for both the metric and the extrinsic curvature tensors. Expressions for the expansion to second order in deformations of geometrical invariants constructed with these tensors are obtained; in particular, the expansion of the Hamiltonian to this order about an equilibrium is considered. Our approach applies as well to any geometrical model for membranes.Comment: 20 page

    Helfrich-Canham bending energy as a constrained non-linear sigma model

    Full text link
    The Helfrich-Canham bending energy is identified with a non-linear sigma model for a unit vector. The identification, however, is dependent on one additional constraint: that the unit vector be constrained to lie orthogonal to the surface. The presence of this constraint adds a source to the divergence of the stress tensor for this vector so that it is not conserved. The stress tensor which is conserved is identified and its conservation shown to reproduce the correct shape equation.Comment: 5 page

    2-Form Gravity of the Lorentzian Signature

    Get PDF
    We introduce a new spinorial, BF-like action for the Einstein gravity. This is a first, up to our knowledge, 2-form action which describes the real, Lorentzian gravity and uses only the self-dual connection. In the generic case, the corresponding classical canonical theory is equivalent to the Einstein-Ashtekar theory plus the reality conditions

    The one-loop elastic coefficients for the Helfrich membrane in higher dimensions

    Full text link
    Using a covariant geometric approach we obtain the effective bending couplings for a 2-dimensional rigid membrane embedded into a (2+D)(2+D)-dimensional Euclidean space. The Hamiltonian for the membrane has three terms: The first one is quadratic in its mean extrinsic curvature. The second one is proportional to its Gaussian curvature, and the last one is proportional to its area. The results we obtain are in agreement with those finding that thermal fluctuations soften the 2-dimensional membrane embedded into a 3-dimensional Euclidean space.Comment: 9 page
    corecore