53,301 research outputs found
Adaptive Thresholding for Sparse Covariance Matrix Estimation
In this paper we consider estimation of sparse covariance matrices and
propose a thresholding procedure which is adaptive to the variability of
individual entries. The estimators are fully data driven and enjoy excellent
performance both theoretically and numerically. It is shown that the estimators
adaptively achieve the optimal rate of convergence over a large class of sparse
covariance matrices under the spectral norm. In contrast, the commonly used
universal thresholding estimators are shown to be sub-optimal over the same
parameter spaces. Support recovery is also discussed. The adaptive thresholding
estimators are easy to implement. Numerical performance of the estimators is
studied using both simulated and real data. Simulation results show that the
adaptive thresholding estimators uniformly outperform the universal
thresholding estimators. The method is also illustrated in an analysis on a
dataset from a small round blue-cell tumors microarray experiment. A supplement
to this paper which contains additional technical proofs is available online.Comment: To appear in Journal of the American Statistical Associatio
Spin-injection Hall effect in a planar photovoltaic cell
Successful incorporation of the spin degree of freedom in semiconductor
technology requires the development of a new paradigm allowing for a scalable,
non-destructive electrical detection of the spin-polarization of injected
charge carriers as they propagate along the semiconducting channel. In this
paper we report the observation of a spin-injection Hall effect (SIHE) which
exploits the quantum-relativistic nature of spin-charge transport and which
meets all these key requirements on the spin detection. The two-dimensional
electron-hole gas photo-voltaic cell we designed to observe the SIHE allows us
to develop a quantitative microscopic theory of the phenomenon and to
demonstrate its direct application in optoelectronics. We report an
experimental realization of a non-magnetic spin-photovoltaic effect via the
SIHE, rendering our device an electrical polarimeter which directly converts
the degree of circular polarization of light to a voltage signal.Comment: 14 pages, 4 figure
Thermodynamic Geometry and Critical Behavior of Black Holes
Based on the observations that there exists an analogy between the
Reissner-Nordstr\"om-anti-de Sitter (RN-AdS) black holes and the van der
Waals-Maxwell liquid-gas system, in which a correspondence of variables is
, we study the Ruppeiner geometry, defined as
Hessian matrix of black hole entropy with respect to the internal energy (not
the mass) of black hole and electric potential (angular velocity), for the RN,
Kerr and RN-AdS black holes. It is found that the geometry is curved and the
scalar curvature goes to negative infinity at the Davies' phase transition
point for the RN and Kerr black holes.
Our result for the RN-AdS black holes is also in good agreement with the one
about phase transition and its critical behavior in the literature.Comment: Revtex, 18 pages including 4 figure
Completeness Results for Parameterized Space Classes
The parameterized complexity of a problem is considered "settled" once it has
been shown to lie in FPT or to be complete for a class in the W-hierarchy or a
similar parameterized hierarchy. Several natural parameterized problems have,
however, resisted such a classification. At least in some cases, the reason is
that upper and lower bounds for their parameterized space complexity have
recently been obtained that rule out completeness results for parameterized
time classes. In this paper, we make progress in this direction by proving that
the associative generability problem and the longest common subsequence problem
are complete for parameterized space classes. These classes are defined in
terms of different forms of bounded nondeterminism and in terms of simultaneous
time--space bounds. As a technical tool we introduce a "union operation" that
translates between problems complete for classical complexity classes and for
W-classes.Comment: IPEC 201
Nonparametric inference procedure for percentiles of the random effects distribution in meta-analysis
To investigate whether treating cancer patients with
erythropoiesis-stimulating agents (ESAs) would increase the mortality risk,
Bennett et al. [Journal of the American Medical Association 299 (2008)
914--924] conducted a meta-analysis with the data from 52 phase III trials
comparing ESAs with placebo or standard of care. With a standard parametric
random effects modeling approach, the study concluded that ESA administration
was significantly associated with increased average mortality risk. In this
article we present a simple nonparametric inference procedure for the
distribution of the random effects. We re-analyzed the ESA mortality data with
the new method. Our results about the center of the random effects distribution
were markedly different from those reported by Bennett et al. Moreover, our
procedure, which estimates the distribution of the random effects, as opposed
to just a simple population average, suggests that the ESA may be beneficial to
mortality for approximately a quarter of the study populations. This new
meta-analysis technique can be implemented with study-level summary statistics.
In contrast to existing methods for parametric random effects models, the
validity of our proposal does not require the number of studies involved to be
large. From the results of an extensive numerical study, we find that the new
procedure performs well even with moderate individual study sample sizes.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS280 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China
Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research
- …