5,770 research outputs found

    Developing Lunar Landing Vehicle Display Requirements through Content Analysis of Apollo Lunar Landing Voice Communications

    Get PDF
    The lengthy period since the Apollo landings limits present-day engineers attempting to draw from the experiences of veteran Apollo engineers and astronauts in the design of a new lunar lander. In order to circumvent these limitations, content analyses were performed on the voice transcripts of the Apollo lunar landing missions. The analyses highlighted numerous inefficiencies in the design of the Apollo Lunar Module displays, particularly in the substantial use of the cognitive resources of the Lunar Module Pilot in the performance of low-level tasks. The results were used to generate functional and information requirements for the next-generation lunar lander cockpit.This research was sponsored by NASA and Draper Laboratory

    Past, Present And Future Implications Of Human Supervisory Control In Space Missions

    Get PDF
    Achieving the United States’ Vision for future Space Exploration will necessitate far greater collaboration between humans and automated technology than previous space initiatives. However, the development of methodologies to optimize this collaboration currently lags behind development of the technologies themselves, thus potentially decreasing mission safety, efficiency and probability of success. This paper discusses the human supervisory control (HSC) implications for use in space, and outlines several areas of current automated space technology in which the function allocation between humans and machines/automation is sub-optimal or under dispute, including automated spacecraft landings, Mission Control, and wearable extra-vehicular activity computers. Based on these case studies, we show that a more robust HSC research program will be crucial to achieving the Vision for Space Exploration, especially given the limited resources under which it must be accomplished

    A Web/Grid Services Approach for Integration of Virtual Clinical & Research Environments

    No full text
    Clinicans have responsibilities for audit and research, often participating in projects with basic scientist colleagues. Our work in a regional teaching hospital setting involves collaboration with the medical school computer services and builds upon work developed in computer science department as part of the Collaborative Orthopaedic Research Environment (CORE) project[1]. This has established a pilot study for proof of concept work. Users are mapped to a personal profile implemented using XML and a service oriented architecture (SOA)[2,3]. This bridges the e-Health and e-Science domains, addressing some of the basic questions of security and uptake

    Postfledging Survival, Movements, and Dispersal of Ring Ouzels (Turdus torquatus)

    Get PDF
    We thank Invercauld Estate for cooperation with access to Glen Clunie. S. Redpath, J. Wilson, and S. Roos provided valuable comments on the manuscript. This study was funded by the Royal Society for the Protection of Birds, Scottish Natural Heritage, and the Cairngorms National Park Authority. J.L.L. was supported by the Natural Environment Research Council.Peer reviewedPublisher PD

    Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis.

    Get PDF
    Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis

    Explaining anomalous responses to treatment in the Intensive Care Unit

    Get PDF
    The Intensive Care Unit (ICU) provides treatment to critically ill patients. When a patient does not respond as expected to such treatment it can be challenging for clinicians, especially junior clinicians, as they may not have the relevant experience to understand the patient’s anomalous response. Datasets for 10 patients from Glasgow Royal Infirmary’s ICU have been made available to us. We asked several ICU clinicians to review these datasets and to suggest sequences which include anomalous or unusual reactions to treatment. Further, we then asked two ICU clinicians if they agreed with their colleagues’ assessments, and if they did to provide possible explanations for these anomalous sequences. Subsequently we have developed a system which is able to replicate the clinicians’ explanations based on the knowledge contained in its several ontologies; further the system can suggest additional explanations which will be evaluated by the senior consultant

    Cartoons for e-health informatics

    Get PDF
    Not only is Hepatitis B serology often misunderstood because of its complex serological implications, but advances in medical science have revolutionised screening and treatment of hepatitis B. To maximise such evolution however, this new information must be relayed effectively and efficiently to current and future medical professionals. Cartoons have been well regarded as a teaching tool in a variety of different settings as is the use of web based technology. Therefore the delivery of a cartoon based learning tool, accessed via on-line learning modules was considered a novel and potentially effective way of disseminating new knowledge. To increase health professionals’ understanding of hepatitis B serology and skill in interpreting the tests that indicate the appropriate treatment, a cartoon series was developed. The cartoons are located on an online educational website and include characters that represent the different antibodies and antigens associated with hepatitis B. The cartoon characters are involved in a series of adventures that represent the various phases of hepatitis B infection, and the paper describes their development. Subsequent research demonstrated that exposure to the online cartoon based learning tool indicates that they are a fun and useful way to increase knowledge
    corecore