28,248 research outputs found
Quasi-particle dephasing time in disordered d-wave superconductors
We evaluate the low-temperature cutoff for quantum interference 1/tf induced
in a d-wave superconductor by the diffusion enhanced quasiparticle interactions
in the presence of disorder. We carry out our analysis in the framework of the
non-linear sigma-model which allows a direct calculation of 1/tf, as the mass
of the transverse modes of the theory. Only the triplet amplitude in the
particle-hole channel and the Cooper amplitude with is pairing symmetry
contribute to 1/tf. We discuss the possible relevance of our results to the
present disagreement between thermal transport data in cuprates and the
localization theory for d-wave quasiparticles
Equilibrium spin currents and magnetoelectric effect in magnetic nanostructures
We discuss the problem of equilibrium spin currents in ferromagnets with
inhomogeneous magnetization. Using simple microscopic models we explain the
physical origin of equilibrium spin currents. Next we derive the equilibrium
spin current from the Hamiltonian with a gauge field associated with local
rotations in the spin space. Several examples of magnetic systems are studied
in details, and the persistent spin current is found to exist in the ground
state of these systems. We also demonstrate the possibility to measure the
equilibrium spin current using the magnetoelectrically induced electric field
near the ring.Comment: RevTex 4 (4 pages
Hole Expansion Simulations of TWIP Steel Sheet Sample
In this work, the stretch flangeability of a TWIP steel sheet sample was investigated both experimentally and numerically through the hole expansion test. Uniaxial tension and disk compression tests were performed to characterize the flow behavior and plastic anisotropy for the TWIP steel sheet sample. The punch load-stroke curve, hole diameter and specimen surface strain distribution near the hole was measured. Then finite element simulations of the hole expansion test were carried out using the finite element code ABAQUS with three yield criteria: von Mises, Hill 1948 and Yld2000-2d. The predicted and experimental results were compared in terms of the final hole radii and the strain distribution.open111Nsciescopu
On the Numerical Accuracy of Spreadsheets
This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo) running on two hardware platforms (i386 and amd64) and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard). The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments.
A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage
A key aspect of a sustainable urban transportation system is the
effectiveness of transportation policies. To be effective, a policy has to
consider a broad range of elements, such as pollution emission, traffic flow,
and human mobility. Due to the complexity and variability of these elements in
the urban area, to produce effective policies remains a very challenging task.
With the introduction of the smart city paradigm, a widely available amount of
data can be generated in the urban spaces. Such data can be a fundamental
source of knowledge to improve policies because they can reflect the
sustainability issues underlying the city. In this context, we propose an
approach to exploit urban positioning data based on stigmergy, a bio-inspired
mechanism providing scalar and temporal aggregation of samples. By employing
stigmergy, samples in proximity with each other are aggregated into a
functional structure called trail. The trail summarizes relevant dynamics in
data and allows matching them, providing a measure of their similarity.
Moreover, this mechanism can be specialized to unfold specific dynamics.
Specifically, we identify high-density urban areas (i.e hotspots), analyze
their activity over time, and unfold anomalies. Moreover, by matching activity
patterns, a continuous measure of the dissimilarity with respect to the typical
activity pattern is provided. This measure can be used by policy makers to
evaluate the effect of policies and change them dynamically. As a case study,
we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
We present and demonstrate a general three-step method for extracting the
quantum efficiency of dispersive qubit readout in circuit QED. We use active
depletion of post-measurement photons and optimal integration weight functions
on two quadratures to maximize the signal-to-noise ratio of the
non-steady-state homodyne measurement. We derive analytically and demonstrate
experimentally that the method robustly extracts the quantum efficiency for
arbitrary readout conditions in the linear regime. We use the proven method to
optimally bias a Josephson traveling-wave parametric amplifier and to quantify
different noise contributions in the readout amplification chain.Comment: 10 pages, 6 figure
Stigmergy-based modeling to discover urban activity patterns from positioning data
Positioning data offer a remarkable source of information to analyze crowds
urban dynamics. However, discovering urban activity patterns from the emergent
behavior of crowds involves complex system modeling. An alternative approach is
to adopt computational techniques belonging to the emergent paradigm, which
enables self-organization of data and allows adaptive analysis. Specifically,
our approach is based on stigmergy. By using stigmergy each sample position is
associated with a digital pheromone deposit, which progressively evaporates and
aggregates with other deposits according to their spatiotemporal proximity.
Based on this principle, we exploit positioning data to identify high density
areas (hotspots) and characterize their activity over time. This
characterization allows the comparison of dynamics occurring in different days,
providing a similarity measure exploitable by clustering techniques. Thus, we
cluster days according to their activity behavior, discovering unexpected urban
activity patterns. As a case study, we analyze taxi traces in New York City
during 2015
Reconstruction of time-dependent coefficients: a check of approximation schemes for non-Markovian convolutionless dissipative generators
We propose a procedure to fully reconstruct the time-dependent coefficients
of convolutionless non-Markovian dissipative generators via a finite number of
experimental measurements. By combining a tomography based approach with a
proper data sampling, our proposal allows to relate the time-dependent
coefficients governing the dissipative evolution of a quantum system to
experimentally accessible quantities. The proposed scheme not only provides a
way to retrieve full information about potentially unknown dissipative
coefficients but also, most valuably, can be employed as a reliable consistency
test for the approximations involved in the theoretical derivation of a given
non-Markovian convolutionless master equation.Comment: 11 pages, 4 figures, revised version published on PR
An analytical approximation scheme to two point boundary value problems of ordinary differential equations
A new (algebraic) approximation scheme to find {\sl global} solutions of two
point boundary value problems of ordinary differential equations (ODE's) is
presented. The method is applicable for both linear and nonlinear (coupled)
ODE's whose solutions are analytic near one of the boundary points. It is based
on replacing the original ODE's by a sequence of auxiliary first order
polynomial ODE's with constant coefficients. The coefficients in the auxiliary
ODE's are uniquely determined from the local behaviour of the solution in the
neighbourhood of one of the boundary points. To obtain the parameters of the
global (connecting) solutions analytic at one of the boundary points, reduces
to find the appropriate zeros of algebraic equations. The power of the method
is illustrated by computing the approximate values of the ``connecting
parameters'' for a number of nonlinear ODE's arising in various problems in
field theory. We treat in particular the static and rotationally symmetric
global vortex, the skyrmion, the Nielsen-Olesen vortex, as well as the 't
Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the
monopole is also computed by the new method. We also consider some ODE's coming
from the exact renormalization group. The ground state energy level of the
anharmonic oscillator is also computed for arbitrary coupling strengths with
good precision.Comment: 5 pages, 3 tables, Late
Stress induced martensite at the crack tip in NiTi alloys during fatigue loading
Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi) were analyzed by Digital Image Correlation (DIC), under fatigue loads. In particular, Single Edge Crack (SEC) specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF), starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence
- …