22 research outputs found

    Disruption of Id1 reveals major differences in angiogenesis between transplanted and autochthonous tumors

    Get PDF
    AbstractId genes regulate tumor angiogenesis and loss of Id1 inhibits tumor xenograft growth in mice. Here we evaluate the role of Id1 in a more clinically relevant tumor model system using a two-step chemical carcinogenesis protocol. Remarkably, we find that Id1−/− mice are more susceptible to skin tumorigenesis compared to their wild-type counterparts. Cutaneous neoplasms in Id1−/− mice show increased proliferation without alterations in tumor angiogenesis; however, Id1−/− mice possess 50% fewer cutaneous γδ T cells than their wild-type counterparts due to an intrinsic migration defect associated with loss of expression of the chemokine receptor, CXCR4. We suggest that there are important differences between the mechanisms of angiogenesis in transplanted and autochthonous tumors and that these findings will have significant implications for the potential utility of antiangiogenic therapies in cancer

    Malignant transformation of human cells by constitutive expression of platelet-derived growth factor-BB

    No full text
    Platelet-derived growth factors (PDGFs) comprise a family of growth factors strongly implicated in human oncogenesis. A number of human tumors overexpress PDGF family members or have translocations activating PDGF receptors. Whereas the epidemiologic evidence implicating PDGF in human tumors is strong, malignant transformation of human cells by overexpression of PDGF has not been demonstrated. We have previously developed a human cell line by the sequential introduction of large T cells and telomerase, and we have demonstrated that these cells express functionally active PDGF receptor (PDGFR) beta. In order to determine whether growth factor-mediated transformation of human cells could occur, these cells were transduced with a retrovirus encoding PDGF-BB. Constitutive expression of PDGF-BB led to malignant transformation in nude mice. This is the first demonstration of constitutive signaling causing malignant transformation of human cells. Some of the changes that occur because of constitutive growth factor expression can be reversed by the clinically approved tyrosine kinase inhibitor Glivec, whereas other changes are not reversible by tyrosine kinase inhibitors. Our model allows the assessment of epigenetic changes that occur during human carcinogenesis. In addition, these studies provide insight into the clinical failure of tyrosine kinase inhibitors as monotherapy for advanced malignancy

    Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: Identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE)

    No full text
    Purpose: Effective new markers of pancreatic carcinoma are urgently needed. In a previous analysis of gene expression in pancreatic adenocarcinoma using serial analysis of gene expression (SAGE), we found that the tag for the mesothelin mRNA transcript was present in seven of eight SAGE libraries derived from pancreatic carcinomas but not in the two SAGE libraries derived from normal pancreatic duct epithelial cells. In this study, we evaluate the potential utility of mesothelin as a tumor marker for pancreatic adenocarcinoma

    MITF Expression Predicts Therapeutic Vulnerability to p300 Inhibition in Human Melanoma

    Full text link
    Abstract Histone modifications, largely regulated by histone acetyltransferases (HAT) and histone deacetylases, have been recognized as major regulatory mechanisms governing human diseases, including cancer. Despite significant effort and recent advances, the mechanism by which the HAT and transcriptional coactivator p300 mediates tumorigenesis remains unclear. Here, we use a genetic and chemical approach to identify the microphthalmia-associated transcription factor (MITF) as a critical downstream target of p300 driving human melanoma growth. Direct transcriptional control of MITF by p300-dependent histone acetylation within proximal gene regulatory regions was coupled to cellular proliferation, suggesting a significant growth regulatory axis. Further analysis revealed forkhead box M1 (FOXM1) as a key effector of the p300–MITF axis driving cell growth that is selectively activated in human melanomas. Targeted chemical inhibition of p300 acetyltransferase activity using a potent and selective catalytic p300/CBP inhibitor demonstrated significant growth inhibitory effects in melanoma cells expressing high levels of MITF. Collectively, these data confirm the critical role of the p300–MITF–FOXM1 axis in melanoma and support p300 as a promising novel epigenetic therapeutic target in human melanoma. Significance: These results show that MITF is a major downstream target of p300 in human melanoma whose expression is predictive of melanoma response to small-molecule inhibition of p300 HAT activity. </jats:sec

    Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma

    No full text
    Serial analysis of gene expression (SAGE) can be used to quantify gene expression in human tissues. Comparison of gene expression levels in neoplastic tissues with those seen in nonneoplastic tissues can, in turn, identify novel tumor markers. Such markers are urgently needed for highly lethal cancers like pancreatic adenocarcinoma, which typically presents at an incurable, advanced stage. The results of SAGE analyses of a large number of neoplastic and nonneoplastic tissues are now available online, facilitating the rapid identification of novel tumor markers. We searched an online SAGE database to identify genes preferentially expressed in pancreatic cancers as compared with normal tissues. SAGE libraries derived from pancreatic adenocarcinomas were compared with SAGE libraries derived from nonneoplastic tissues. Three promising tags were identified. Two of these tags corresponded to genes (lipocalin and trefoil factor 2) previously shown to be overexpressed in pancreatic carcinoma, whereas the third tag corresponded to prostate stem cell antigen (PSCA), a recently discovered gene thought to be largely restricted to prostatic basal cells and prostatic adenocarcinomas. PSCA was expressed in four of the six pancreatic cancer SAGE libraries, but not in the libraries derived from normal pancreatic ductal cells. We confirmed the overexpression of the PSCA mRNA transcript in 14 of 19 pancreatic cancer cell lines by reverse transcription-PCR, and using immunohistochemistry, we demonstrated PSCA protein overexpression in 36 of 60 (60%) primary pancreatic adenocarcinomas. In 59 of 60 cases, the adjacent nonneoplastic pancreas did not label for PSCA. PSCA is a novel tumor marker for pancreatic carcinoma that has potential diagnostic and therapeutic implications. These results establish the validity of analyses of SAGE databases to identify novel tumor markers
    corecore