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Abstract

The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been
successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The
mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct
carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to
accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering
volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO
exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability.
Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous
nanostructures and RGO/C double coating.
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Background
Recently, metal oxides undergoing the conversion reac-
tions have been intensively studied as promising anode
materials for lithium-ion batteries since they can over-
come the capacity limitation of graphite (372 mAh/g)
[1-3]. Among various metal oxides, ZnO has received
attention due to some advantages, such as reasonably
high theoretical capacity (978 mAh/g), environmental
benignity, low cost, and availability for tailoring assorted
nanostructures [4-6]. However, ZnO suffers from par-
ticle fracture and loss of electrical contact arising from
the morphological changes during electrochemical reac-
tions with Li+ (Equations 1 and 2) [7-9]:

ZnO þ 2Liþ þ 2e− ↔ Zn þ Li2O ð1Þ
Zn þ Liþ þ e− ↔ LiZn ð2Þ
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In order for ZnO to circumvent these limitations, vari-
ous nanostructures have been suggested, most of which
include nanoparticles, nanowires, nanotubes, hollow
spheres, core-shell structures with carbon, porous struc-
tures, nanocomposites with reduced graphene oxide, etc.
[10-21]. Among these candidates, 3-D porous aggregates
composed of nanoparticles clearly have two outstanding
advantages: pores between nanoparticles act both as free
spaces to accommodate the volume variations during
cycling and as short diffusion paths of Li ions into the
nanoparticles [22-27]. Furthermore, conformal carbon
coating onto the nanoparticles is one of the well-known
techniques to effectively restrain the volume change dur-
ing lithiation/delithiation [28-34]. Such a carbon coating
entails the use of disordered carbon while the electronic
conductivity is not significant until the carbonization
temperature is higher than the temperature when car-
bothermal reductions of metal oxides start to occur
(approximately 600°C) [35,36]. Alternatively, the flexible
graphene, a sp2-hybridized two-dimensional carbon layer
is one of the best effective ways to enhance the anode
performance of ZnO by providing high electronic
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conductivity and/or circumventing mechanical stresses
during the electrochemical cycling [35-44].
In this study, we have focused on improving the re-

versible capacity and cyclability of ZnO by 3-D porous
nanostructures and sequential surface modification
through distinct carbon-based coating steps. The 3-D
porous structures can benefit from the mesopores acting
as free spaces to accommodate volume expansion during
cycling. In addition, the double coating of reduced gra-
phene oxide (RGO) and disordered carbon on both the
micrometric and nanometric dimensions of ZnO aggre-
gates, respectively, establishes a conductive network con-
necting the aggregates and rigid buffer layers for volume
changes of ZnO nanoparticles. As a consequence, the
RGO/C/ZnO nanocomposites can exhibit not only high
reversible capacity with long cycle life but also enhanced
rate capability.

Methods
The 3-D porous ZnO aggregates (ZnO) were synthesized
by a solvothermal method. Typically, zinc acetate dihy-
drate (Zn(CH3COO)2 · 2H2O: Sigma-Aldrich) was added
to diethylene glycol ((HOCH2CH2)2O: Sigma-Aldrich)
and heated in an autoclave at 160°C for 6 h. The as-
synthesized solution was then centrifuged and washed
with ethanol, and subsequently dried at 60°C [45,46].
The carbon-coated ZnO aggregates (C/ZnO) were syn-

thesized by impregnating the as-synthesized ZnO pow-
ders in sucrose solution (sucrose:ZnO = 3:7 by weight)
followed by drying and calcining them at 550°C for 3 h
under H2/Ar (4 vol.% H2) atmosphere. A modified
Hummers’ method was used to synthesize graphene
Figure 1 Schematic illustration for the RGO/C double-coated ZnO aggrega
graphene oxide (GO) wrapping using electrostatic interactions, and therma
cross-section view of the reduced graphene oxide/carbon double-coated Z
oxide (GO), as described elsewhere [47,48]. Prior to GO
wrapping, the surface modification of ZnO (or C/ZnO)
was first performed by mixing aminopropyltriethoxysi-
lane (C9H23NO3Si: APTES) with ZnO in ethanol disper-
sion for 12 h. An aqueous graphene-oxide suspension
(100 ml, 2 mg/ml) was added into the APTES-modified
ZnO dispersion (500 ml, 1 mg/ml) under stirring for
20 min, followed by centrifugation [43,49-52]. Thermal
reduction of GO was carried out under H2/Ar 4 vol.% H2

at 550°C for 3 h.
The crystal structure and grain size of the ZnO aggre-

gates were characterized by X-ray diffraction (XRD, D8
Advance: Bruker). The morphology was analyzed using a
field-emission scanning electron microscopy (FE-SEM,
SU70: Hitachi), and the carbon content was measured
using a carbon, hydrogen, nitrogen, sulfur (CHNS)
analyzer (Flash EA 1112: Thermo Electron Corp.). The
nitrogen adsorption and desorption isotherms were ob-
tained at 77 K (Micromeritics ASAP 2010), and the specific
surface area and the pore size distribution were calculated
by the Brunauer-Emmett-Teller (BET) and the Barrett-
Joyner-Halenda (BJH) methods, respectively.
For the electrochemical characterization, the active

materials were tested by using coin-type half cells (2016
type) with a Li counter electrode. The composition
of the electrode was set to be the same for all of the
samples, which consisted of an active material, super
P carbon black, and a polyvinylidene fluoride binder
with a weight ratio of 3:1:1, and the geometric area
of the electrode was 0.71 cm2. Calculation of the
specific capacity of the cell is carried out based on
the carbon content from CHNS analysis. The specific
tes. (a) The synthesis process, via carbon coating followed by
l reduction of GO. (b) Three-dimensional view and two-dimensional
nO aggregates (RGO/C/ZnO).



Figure 2 SEM images. (a) Bare ZnO, (b) C/ZnO, (c) RGO/ZnO, and (d) RGO/C/ZnO.

Figure 3 Characterization of ZnO aggregates. (a) XRD patterns of the RGO/C/ZnO, RGO/ZnO, C/ZnO, and bare ZnO. (b) Raman spectra of the
RGO/C/ZnO, RGO/ZnO, and C/ZnO. (c) SEM images of the bare ZnO aggregates. (d) N2 adsorption/desorption isotherms of the bare ZnO
aggregates. The inset shows the pore-size distribution of the bare ZnO aggregates.
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Table 1 Carbon content, grain size, Raman-intensity ratio, and charge-transfer resistance of the RGO/C/ZnO, C/ZnO,
and RGO/ZnO

Sample Carbon content (wt.%) Grain size (nm) Raman intensity (ID/IG) Charge-transfer resistance (Rct) (Ω cm2)

RGO/C/ZnO 18.9 31.6 ± 7.9 0.76 60.8 ± 0.6

C/ZnO 7.6 31.3 ± 7.8 0.72 273.3 ± 1.2

RGO/ZnO 14.6 45.7 ± 17.1 0.83 99.6 ± 1.0
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capacity of carbonaceous materials was assumed to have
the same theoretical capacity with graphite (372 mAh/g).
The minor contribution from the conductive additive
(super P carbon black) was excluded. The electrolyte
contained 1 M LiPF6 in ethylene carbonate and di-
ethylene carbonate (1/1 vol.%) (Panax Etec). Electro-
chemical impedance spectra (EIS) were measured
using a potentiostat (CHI 608C: CH Instrumental Inc.)
after 2 cycles, and the applied voltage was 0.5 V with an
Figure 4 Electrochemical properties. Charge–discharge curves of the (a) b
performances of the RGO/C/ZnO, RGO/ZnO, C/ZnO, and bare ZnO. (f) Rate
AC amplitude of 5 mV in the frequency range from 1 mHz
to 100 kHz.

Results and discussion
The synthetic processes for the RGO/C double-coated
ZnO aggregates are illustrated in Figure 1a. The sol-
vothermal method initially produced approximately
25-nm-sized nanoparticles which, afterwards, aggre-
gated to the 3-D porous ZnO. After conformal carbon
are ZnO, (b) C/ZnO, (c) RGO/ZnO, and (d) RGO/C/ZnO. (e) Cycle-life
capability of the RGO/C/ZnO, RGO/ZnO, and C/ZnO (1 C = 978 mA/g).



Figure 5 Electrochemical impedance spectra of the RGO/C/ZnO,
RGO/ZnO, and C/ZnO with an applied voltage of 0.38 V after
3 cycles. The fitting lines were obtained using the equivalent circuit
in the inset.
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coating on the surface of each ZnO nanoparticle, the
carbon-coated ZnO (C/ZnO) was wrapped by graphene
oxide (GO) sheets. The positively charged C/ZnO pre-
pared through the surface modification by APTES at-
tracts negatively charged GO, thereby resulting in the
GO/C/ZnO nanocomposites [36]. The final annealing
process gives rise to the reduction of graphene oxide
(RGO), establishing a three-dimensional network that
renders well-connected electron percolation among the
C/ZnO aggregates.
The bare ZnO (Figures 2a and 3c) clearly shows

porous microspheres that consist of the approximately
25-nm-sized nanoparticles. The morphology of the
C/ZnO (Figure 2b) resembles that of the bare sam-
ple. Both RGO-wrapped ZnO (RGO/ZnO) and RGO/
C/ZnO are covered and connected to each other by
the soft RGO sheets providing facile electron conduction
(Figure 2c, d) and Additional file 1: Figure S2a, b.
All of the diffraction peaks are indexed to ZnO

with hexagonal wurtzite structure (JCPDS #36-1451)
(Figure 3a), and the diffraction peak widths Δk (full
width at half maximum) were fitted using double-peak
Lorentzian functions for Kα1 and Kα2. Grain sizes of the
samples were estimated by the Scherrer equation [53,54]
and are listed in Table 1. It can be recognized that the
conformal carbon layer prevents the growth of ZnO
nanoparticles during the annealing steps. The RGO
sheets on the ZnO aggregates, however, were not as ef-
fective as the carbon layer, as expected, in terms of sup-
pressing the grain growth of each nanoparticle (Table 1)
[55]. The I(D) and I(G) from the Raman spectra are the
ratio of defective and sp2 bonding characters of the car-
bon, respectively. The lower I(D)/I(G) was observed in the
RGO-coated sample than C/ZnO, which indicates that
RGO has the richness in sp2 bonding than the disordered
carbon. This results in higher conductivity than the dis-
ordered carbon-coated samples. The Raman spectra of
RGO/C/ZnO lie between C/ZnO and RGO/ZnO, proving
that the RGO/C/ZnO is successfully modified by both
the reduced graphene oxide and sucrose-derived carbon
(Figure 3b) [56-60].
The porous nanostructures of the bare ZnO aggregates

were also confirmed by BET and BJH (Figure 3d), show-
ing a typical type-IV mesoporous structure [61]. The
BET surface area of the ZnO aggregates amounts to
144.6 m2/g, and a pore distribution of approximately
3.5 nm was determined by the desorption curve (the
inset of Figure 3d). The SEM image which shows a
broken ZnO aggregate also indicates the porosity inside
of the ZnO aggregates (Additional file 1: Figure S1), and
the pores between primary particles are reflected in the
BET analysis. The surface area and average pore size of
the C/ZnO, RGO/ZnO, and RGO/C/ZnO are given in
Additional file 1: Table S1 and Figure S3, and all the
coated aggregates have mesoporous characteristics. These
porous nanostructures can be beneficial both for the facile
Li diffusion and free-space buffering during volume
variation [22-24,58].
To identify the effects of the carbon-based modifi-

cations on the electrochemical performance, the bare
ZnO, C/ZnO, RGO/ZnO, and RGO/C/ZnO were gal-
vanostatically cycled in the range of 0.02 to 3.00 V
(vs. Li+/Li) at a current density of 97.8 mA/g (= 0.1 C)
(Figure 4a, b, c, d, e). For the first cycle, all the samples
show very high discharge capacity. It is well known that
side reactions with an electrolyte such as a formation of
the SEI layer severely occur on the surface area of the ac-
tive material under 1 V during the first discharge, which
will result in the low coulombic efficiency in particular
using nanosized materials [62]. Interestingly, more vigor-
ous side reactions could be observed in the case of gra-
phene modification [15,40]. Cyclic voltammogram (CV)
curves in Additional file 1: Figure S4 confirm that only Li
insertion below 0.5 V occurs with vigorous side reactions
with the electrolyte. It seems that the bare ZnO suffers
from a significant capacity loss only after 5 cycles. In
terms of the composites, the capacity fading was more
significant for the RGO/ZnO compared to the C/ZnO or
RGO/C/ZnO, yielding a discharge capacity of approxi-
mately 218 mAh/g at the 50th cycle. The C/ZnO and
RGO/C/ZnO, on the other hand, show more stable
cycle-life performances, which indicate the carbon layers
effectively inhibit the massive aggregations of Zn/ZnO
nanograins during cycling. The higher reversible capacity
of the RGO/C/ZnO sample (approximately 600 mAh/g
after 50 cycles) than that of the C/ZnO comes from



Figure 6 Comparison of C/ZnO electrodes before and after cycling. SEM image of the (a) initial C/ZnO and (b) C/ZnO after 10 cycles at
0.1 C rate.
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the 3-D network of graphene wrapping the C/ZnO,
enhancing the electronic percolation within the sec-
ondary particles.
Regarding the rate capability, the RGO/ZnO shows a

dramatic capacity fade with the increased current dens-
ity, and the capacity is hardly observed at a current
density of 1,956 mA/g (= 2 C) (Figure 4f ). Meanwhile,
the RGO/C double-coated ZnO and C/ZnO exhibit the
revisable capacity of approximately 300 mAh/g and ap-
proximately 230 mAh/g even at a rate as high as 3 C
rate (2,934 mA/g), respectively. The kinetics involved in
ZnO through the modification by RGO- and/or C are
evaluated by electrochemical impedance spectroscopy
(EIS) with an equivalent circuit (Figure 5). The diameter
of the semicircle can be approximately assigned to the
charge-transfer resistance (Rct): the RGO/C/ZnO elec-
trode exhibits smaller Rct than C/ZnO or RGO/ZnO,
indicating better electrochemical activity [57,60].
The RGO/C double-coated porous ZnO aggregates ex-

hibit good cyclability, high specific capacity, and excel-
lent rate capability, which are attributed to both the 3-D
porous nanostructures and RGO/C-double coating of
aggregates. First, the approximately 3.5-nm pores can
provide a space to alleviate the volume expansion during
cycling. Second, the carbon coating layer on each ZnO
nanoparticle can buffer the volume expansion during
lithiation. Therefore, the overall morphology during
cycling can be preserved without much fracture of ap-
proximately 1-μm porous aggregates, as confirmed in
Figure 6. Also, the 3-D network of graphene, wrapping
around the C/ZnO porous powders, enhances the elec-
tronic conduction through the aggregates.

Conclusions
In this work, we have proposed the RGO/C double-
coated ZnO nanocomposites as an anode material with
excellent electrochemical properties. The 3-D porous
ZnO aggregates are facilely modified through distinct
carbon-based coating steps via conformal carbon coating,
GO wrapping, and thermal reduction. The approximately
32-nm-sized RGO/C/ZnO nanocomposites with approxi-
mately 1-μm porous powders exhibited superior electro-
chemical performance, including remarkable cycle life,
high reversible capacity, and excellent rate capability.
The enhanced electrochemical performance arose from
the combination of unique properties of the mesopores
acting as free space to accommodate volume expansion
during cycling, conformal carbon layer on each nano-
particle surface buffering volume changes, and conduct-
ive RGO sheets connecting the aggregates to each
other. The work introduced in doubly coated ZnO can
be extended to the synthesis of other novel electrodes
where the cycle life and rate capability are significantly
associated with their mechanical failure and appropriate
electronic conduction.
Additional file

Additional file 1: Supporting Information. Table S1. BET surface area
and average pore size of the C/ZnO, RGO/ZnO, and RGO/C/ZnO. Figure S1.
SEM image of the bare ZnO aggregates. Figure S2. SEM images of the
(a) RGO/ZnO aggregates and (b) RGO/C/ZnO aggregates. Figure S3. N2

adsorption/desorption isotherms of the C/ZnO, RGO/ZnO, and RGO/C/ZnO.
The inset shows the pore-size distribution of these samples. Figure S4.
Cyclic-voltammetry of (a) C/ZnO and (b) RGO/C/ZnO (0.001 to 3.0 V with the
scan rate of 0.1 mV/s).
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