53 research outputs found

    3D Volume Reconstruction by Serially Acquired 2D Slices Using a Distance Transform-Based Global Cost Function

    Full text link
    Abstract. An accurate, computationally eÆcient and fully-automated algorithm for the alignment of 2D serially acquired sections forming a 3D volume is presented. The method accounts for the main shortcomings of 3D image alignment: corrupted data (cuts and tears), dissimilarities or discontinuities between slices, missing slices. The approach relies on the optimization of a global energy function, based on the object shape, measuring the similarity between a slice and its neighborhood in the 3D volume. Slice similarity is computed using the distance transform measure in both directions. No particular direction is privileged in the method avoiding global osets, biases in the estimation and error prop-agation. The method was evaluated on real images (medical, biological and other CT scanned 3D data) and the experimental results demon-strated the method's accuracy as reconstuction errors are less than 1 degree in rotation and less than 1 pixel in translation.

    An Algorithm for Efficient and Exhaustive Template Matching

    No full text
    This paper proposes an algorithm for efficient and exhaustive template matching based on the Zero mean Normalized Cross Correlation (ZNCC) function. The algorithm consists in checking at each position a sufficient condition capable of rapidly skipping most of the expensive calculations involved in the evaluation of ZNCC scores at those points that cannot improve the best score found so far. The sufficient condition devised in this paper extends the concept of Bounded Partial Correlation (BPC) from Normalized Cross Correlation (NCC) to the more robust ZNCC function. Experimental results show that the proposed technique is effective in speeding up the standard procedure and that the behavior, in term of computational savings, follows that obtained by the BPC technique in the NCC case

    Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images

    No full text
    We present a validation of an intensity based two- to three-dimensional image registration algorithm. The algorithm can register a CT volume to a single-plane fluoroscopy image. Four routinely acquired clinical data sets from patients who underwent endovascular treatment for an abdominal aortic aneurysm were used. Each data set was comprised of two intraoperative fluoroscopy images and a preoperative CT image. Regions of interest (ROI) were drawn around each vertebra in the CT and fluoroscopy images. Each CT image ROI was individually registered to the corresponding ROI in the fluoroscopy images. A cross validation approach was used to obtain a measure of registration consistency. Spinal movement between the preoperative and intraoperative scene was accounted for by using two fluoroscopy images. The consistency and robustness of the algorithm when using two similarity measures, pattern intensity and gradient difference, was investigated. Both similarity measures produced similar results. The consistency values were rotational errors below 0.74 degree and in-plane translational errors below 0.90 mm. These errors approximately relate to a two-dimensional projection error of 1.3 mm. The failure rate was less than 8.3% for three of the four data sets. However, for one of the data sets a much larger failure rate (28.5%) occurred

    Non-aqueous electrolyte solutions in chemistry and modern technology

    Get PDF
    In this paper a brief survey is given of the properties of non-aqueous electrolyte solutions and their applications in chemistry and technology without going into the details of theory. Specific solvent-solute interactions and the role of the solvent beyond its function as a homogenous isotropic medium are stressed. Taking into account Parker's statement1) ldquoScientists nowadays are under increasing pressure to consider the relevance of their research, and rightly sordquo we have included examples showing the increasing industrial interest in non-aqueous electrolyte solutions. The concepts and results are arranged in two parts. Part A concerns the fundamentals of thermodynamics, transport processes, spectroscopy and chemical kinetics of non-aqueous solutions and some applications in these fields. Part B describes their use in various technologies such as high-energy batteries, non-emissive electro-optic displays, photoelectrochemical cells, electrodeposition, electrolytic capacitors, electro-organic synthesis, metallurgic processes and others. Four Appendices are added. Appendix A gives a survey on the most important non-aqueous solvents, their physical properties and correlation parameters, and the commonly used abbreviations. Appendices B and C show the mathematical background of the general chemical model. The Symbols and abbreviations of the text are listed and explained in Appendix D

    A new Approach to Satellite Time Series Co-registration for Landslide Monitoring

    No full text
    Image-to-image co-registration is one of the preprocessing steps needed for the analysis of satellite time series. This chapter presents a new approach where all the available images are simultaneously co-registered, overcoming the limits of traditional techniques. This method was tested on the flood and landslide that occurred in Valtellina (northern Italy) during summer of 1987, resulting in the large rockslide of Val Pola. A data set made up of 13 medium-resolution satellite images collected with Landsat-4 and Landsat-5 Thematic Mapper over a period of 30 years was automatically processed. Results showed that the new approach can provide subpixel accuracy close to manual measurements, which today are considered the most accurate method for image registration. The multi-image co-registration method also demonstrated to be atmospheric resistant and robust against land-cover changes, snow, and cloud cover
    corecore