1,236 research outputs found

    Exploring close consumer-producer links to maintain and enhance on-farm biodiversity

    Get PDF
    This paper deals with the question of whether local selling of farm products improves on-farm biodiversity. In contrast to the main agricultural trend of farms specialising and increasing in size in response to the national and global markets, increasing numbers of Swedish farmers are instead diverting their efforts towards selling at local markets. Based on a study of six farms, the paper explores the nature of diversity on these farms and identifies factors supporting diversity. The study shows that farmers who interact with consumers are encouraged to diversify their production. The actual crops and varieties grown are determined by a combination of the natural conditions prevailing on the farm and the conditions created by the farmer in terms of marketing strategy for the products

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O((2ε(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220

    Evaluation of low-cost materials for sorption of hydrophobic organic pollutants in stormwater

    Get PDF
    Conventional stormwater treatment techniques such as sedimentation and filtration are inefficient for removing the dissolved and colloidal phases of hydrophobic organic compounds (HOCs) present in stormwater. Adsorption could be a promising technique for removing colloidal and dissolved pollutants. Five low-cost sorbent materials were investigated in this project, including two minerals - vermiculite and perlite - and three waste products - two pine barks and a sawdust - as potential adsorbents for removal of polycyclic aromatic hydrocarbons (PAHs), alkylphenols and phthalates; HOCs commonly found in stormwater. Adsorption capacity and kinetics were studied through batch adsorption tests using synthetic stormwater spiked with a mixture of HOCs. Vermiculite and perlite exhibited insignificant removal of the organic contaminants. The three wood-based materials retained >80% of the initial HOC concentration (10-300μg/L). The two barks exhibited slightly higher adsorption capacities of HOCs than the sawdust. For all compounds tested, maximum adsorption onto the wood-based media was reached in <10min. The highest adsorption capacity was found for PAHs (up to 45μg/g), followed by alkylphenols and phthalates. No correlation was found between adsorption capacity and physical-chemical parameters such as solubility and partition coefficients (log K<inf>ow</inf>). Agreement between empirical data and the pseudo-second order kinetic model suggest chemisorption of HOCs onto a monolayer on wood-based media. This could lead to early saturation of the materials and should be investigated in future studies through repeated adsorption of HOCs, for example in column studies

    Corporate Financing in Great Britain

    Get PDF
    Background: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA). Methodology/Principal Findings: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH) activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 mu M, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component) of 34 mu M. Conclusions/Significance: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer

    On Pebble Automata for Data Languages with Decidable Emptiness Problem

    Get PDF
    In this paper we study a subclass of pebble automata (PA) for data languages for which the emptiness problem is decidable. Namely, we introduce the so-called top view weak PA. Roughly speaking, top view weak PA are weak PA where the equality test is performed only between the data values seen by the two most recently placed pebbles. The emptiness problem for this model is decidable. We also show that it is robust: alternating, nondeterministic and deterministic top view weak PA have the same recognition power. Moreover, this model is strong enough to accept all data languages expressible in Linear Temporal Logic with the future-time operators, augmented with one register freeze quantifier.Comment: An extended abstract of this work has been published in the proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science 5734, pages 712-72

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    The tropical shadow-vertex algorithm solves mean payoff games in polynomial time on average

    Full text link
    We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over the tropical semiring (R{},max,+)(\mathbb{R} \cup \{-\infty\}, \max, +). The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical polyhedra, and that its computation reduces to optimal assignment problems through Pl\"ucker relations.Comment: 17 pages, 7 figures, appears in 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part

    Crime in Maine 2014

    Get PDF
    Automata over infinite alphabets have recently come to be studied extensively as potentially useful tools for solving problems in verification and database theory. One popular model of automata studied is the Class Memory Automata (CMA), for which the emptiness problem is equivalent to Petri Net Reachability. We identify a restriction - which we call weakness - of CMA, and show that their emptiness problem is equivalent to Petri Net Coverability. Further, we show that in the deterministic case they are closed under all Boolean operations. We clarify the connections between weak CMA and existing automata over data languages. We also extend CMA to operate over multiple levels of nested data values, and show that while these have undecidable emptiness in general, adding the weakness constraint recovers decidability of emptiness, via reduction to coverability in well-structured transition systems. We also examine connections with existing automata over nested data.Comment: Preprint of LATA'15 pape

    An automaton over data words that captures EMSO logic

    Full text link
    We develop a general framework for the specification and implementation of systems whose executions are words, or partial orders, over an infinite alphabet. As a model of an implementation, we introduce class register automata, a one-way automata model over words with multiple data values. Our model combines register automata and class memory automata. It has natural interpretations. In particular, it captures communicating automata with an unbounded number of processes, whose semantics can be described as a set of (dynamic) message sequence charts. On the specification side, we provide a local existential monadic second-order logic that does not impose any restriction on the number of variables. We study the realizability problem and show that every formula from that logic can be effectively, and in elementary time, translated into an equivalent class register automaton
    corecore