315 research outputs found

    The KO*-rings of BT^m, the Davis-Januszkiewicz Spaces and certain toric manifolds

    Full text link
    This paper contains an explicit computation of the KO*-ring structure of an m-fold product of CP^{\infty}, the Davis-Januszkiewicz spaces and toric manifolds which have trivial Sq^2-homology.Comment: 34 page

    Software for Distributed Computation on Medical Databases: A Demonstration Project

    Get PDF
    Bringing together the information latent in distributed medical databases promises to personalize medical care by enabling reliable, stable modeling of outcomes with rich feature sets (including patient characteristics and treatments received). However, there are barriers to aggregation of medical data, due to lack of standardization of ontologies, privacy concerns, proprietary attitudes toward data, and a reluctance to give up control over end use. Aggregation of data is not always necessary for model fitting. In models based on maximizing a likelihood, the computations can be distributed, with aggregation limited to the intermediate results of calculations on local data, rather than raw data. Distributed fitting is also possible for singular value decomposition. There has been work on the technical aspects of shared computation for particular applications, but little has been published on the software needed to support the "social networking" aspect of shared computing, to reduce the barriers to collaboration. We describe a set of software tools that allow the rapid assembly of a collaborative computational project, based on the flexible and extensible R statistical software and other open source packages, that can work across a heterogeneous collection of database environments, with full transparency to allow local officials concerned with privacy protections to validate the safety of the method. We describe the principles, architecture, and successful test results for the site-stratified Cox model and rank-k Singular Value Decomposition (SVD)

    An Infrared Imaging Method for High-Throughput Combinatorial Investigation of Hydrogenation-Dehydrogenation and New Phase Formation of Thin Films

    Get PDF
    We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a Mg thin film on a thermally oxidized Si substrate during annealing

    Competition and Selection Among Conventions

    Full text link
    In many domains, a latent competition among different conventions determines which one will come to dominate. One sees such effects in the success of community jargon, of competing frames in political rhetoric, or of terminology in technical contexts. These effects have become widespread in the online domain, where the data offers the potential to study competition among conventions at a fine-grained level. In analyzing the dynamics of conventions over time, however, even with detailed on-line data, one encounters two significant challenges. First, as conventions evolve, the underlying substance of their meaning tends to change as well; and such substantive changes confound investigations of social effects. Second, the selection of a convention takes place through the complex interactions of individuals within a community, and contention between the users of competing conventions plays a key role in the convention's evolution. Any analysis must take place in the presence of these two issues. In this work we study a setting in which we can cleanly track the competition among conventions. Our analysis is based on the spread of low-level authoring conventions in the eprint arXiv over 24 years: by tracking the spread of macros and other author-defined conventions, we are able to study conventions that vary even as the underlying meaning remains constant. We find that the interaction among co-authors over time plays a crucial role in the selection of them; the distinction between more and less experienced members of the community, and the distinction between conventions with visible versus invisible effects, are both central to the underlying processes. Through our analysis we make predictions at the population level about the ultimate success of different synonymous conventions over time--and at the individual level about the outcome of "fights" between people over convention choices.Comment: To appear in Proceedings of WWW 2017, data at https://github.com/CornellNLP/Macro

    Hamiltonian Determination with Restricted Access in Transverse Field Ising Chain

    Full text link
    We propose a method to evaluate parameters in the Hamiltonian of the Ising chain under site-dependent transverse fields, with a proviso that we can control and measure one of the edge spins only. We evaluate the eigenvalues of the Hamiltonian and the time-evoultion operator exactly for a 3-spin chain, from which we obtain the expectation values of σx\sigma_x of the first spin. The parameters are found from the peak positions of the Fourier transform of the expectation value. There are four assumptions in our method, which are mild enough to be satisfied in many physical systems.Comment: 15pages, 4 figure

    Light propagation in non-trivial QED vacua

    Get PDF
    Within the framework of effective action QED, we derive the light cone condition for homogeneous non-trivial QED vacua in the geometric optics approximation. Our result generalizes the ``unified formula'' suggested by Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts and refractive indices for soft photons travelling through these vacua. Furthermore, we clarify the connection between the light velocity shift and the scale anomaly. This study motivates the introduction of a so-called effective action charge that characterizes the velocity modifying properties of the vacuum. Several applications are given concerning vacuum modifications caused by, e.g., strong fields, Casimir systems and high temperature.Comment: 13 pages, REVTeX, 3 figures, to appear in Phys. Rev.

    Tunable Multiferroic Properties in Nanocomposite PbTiO\u3csub\u3e3\u3c/sub\u3e-CoFe\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e Epitaxial Thin Films

    Get PDF
    We report on the synthesis of PbTiO3–CoFe2O4 multiferroic nanocomposites and continuous tuning of their ferroelectric and magnetic properties as a function of the average composition on thin-film composition spreads. The highest dielectric constant and nonlinear dielectric signal was observed at (PbTiO3)85–(CoFe2O4)15, where robust magnetism was also observed. Transmission electron microscopy revealed a pancake-shaped epitaxial nanostructure of PbTiO3 on the order of 30 nm embedded in the matrix of CoFe2O4 at this composition. Composition dependent ferroics properties observed here indicate that there is considerable interdiffusion of cations into each other

    Exploration of Artificial Multiferroic Thin-Film Heterostructures using Composition Spreads

    Get PDF
    We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120

    Giant Magnetostriction in Annealed Co\u3csub\u3e1-x\u3c/sub\u3eFe\u3csub\u3ex\u3c/sub\u3e Thin-Films

    Get PDF
    Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff \u3e1,000 p.p.m. Microstructural analyses of Co1−xFex films indicate that maximal magnetostriction occurs at compositions near the (fcc+bcc)/bcc phase boundary and originates from precipitation of an equilibrium Co-rich fcc phase embedded in a Fe-rich bcc matrix. The results indicate that the recently proposed heterogeneous magnetostriction mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
    • …
    corecore