11 research outputs found

    Cytotoxic and Genotoxic Consequences of Heat Stress Are Dependent on the Presence of Oxygen in Saccharomyces cerevisiae

    No full text
    Lethal heat stress generates oxidative stress in Saccharomyces cerevisiae, and anaerobic cells are several orders of magnitude more resistant than aerobic cells to a 50°C heat shock. Here we characterize the oxidative effects of this heat stress. The thermoprotective effect in anaerobic cells was not due to expression of HSP104 or any other heat shock gene, raising the possibility that the toxicity of lethal heat shock is due mainly to oxidative stress. Aerobic but not anaerobic heat stress caused elevated frequencies of forward mutations and interchromosomal DNA recombination. Oxidative DNA repair glycosylase-deficient strains under aerobic conditions showed a powerful induction of forward mutation frequencies compared to wild-type cells, which was completely abolished under anaerobiosis. We also investigated potential causes for this oxygen-dependent heat shock-induced genetic instability. Levels of sulfhydryl groups, dominated mainly by the high levels of the antioxidant glutathione (reduced form) and levels of vitamin E, decreased after aerobic heat stress but not after anaerobic heat stress. Aerobic heat stress also led to an increase in mitochondrial membrane disruption of several hundredfold, which was 100-fold reduced under anaerobic conditions

    Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae

    No full text
    In Saccharomyces cerevisiae UV radiation and a variety of chemical DNA-damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of these genes is PHR1, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHR1 require an upstream activation sequence, UAS(PHR1), which has homology with DRC elements found upstream of at least 19 other DNA repair and DNA metabolism genes in yeast. Here we report the identification of the UME6 gene of S. cerevisiae as a regulator of UAS(PHR1) activity. Multiple copies of UME6 stimulate expression from UAS(PHR1) and the intact PHR1 gene. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHR1 is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UME6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHR1 mRNA, and increases the UV sensitivity of a rad2 mutant. Despite the fact that UAS(PHR1) does not contain the URS1 sequence, which has been previously implicated in UME6-mediated transcriptional regulation, we find that Ume6p binds to UAS(PHR1) with an affinity and a specificity similar to those seen for a URS1 site. Similar binding is also seen for DRC elements from RAD2, RAD7, and RAD53, suggesting that UME6 contributes to the regulated expression of a subset of damage-responsive genes in yeast

    Regulation of gene expression by oxygen in Saccharomyces cerevisiae

    No full text

    Fermente

    No full text

    The RAS-adenylate cyclase pathway and cell cycle control inSaccharomyces cerevisiae

    No full text
    corecore