129 research outputs found
The Role of Chlamydia trachomatis Polymorphic Membrane Proteins in Inflammation and Sequelae among Women with Pelvic Inflammatory Disease
Chlamydia trachomatis polymorphic membrane proteins (Pmps) may increase genital tract inflammation and play a role in virulence. Antibody levels for PmpA, PmpD, and PmpI, measured in densitometric units, were assessed among a pilot sample of 40 C. trachomatis-infected women with mild-to-moderate clinical PID. Women who expressed antibodies to PmpA were less likely to achieve pregnancy (40.0% versus 85.7%; P = 0.042) and less likely to have a live birth (0.0% versus 80.0%; P = 0.005) compared to women who did not express antibody to PmpA. Women who expressed antibodies to PmpI were more likely to have upper genital tract infection (61.5% versus 20.0%; P = 0.026). However, seropositivity to PmpI and PmpD did not modify the risk of reproductive sequelae or inflammation. Seropositivity to chlamydial PmpA may represent a biomarker of increased risk of sequelae secondary to infection with C. trachomatis
The ALPS project release 2.0: Open source software for strongly correlated systems
We present release 2.0 of the ALPS (Algorithms and Libraries for Physics
Simulations) project, an open source software project to develop libraries and
application programs for the simulation of strongly correlated quantum lattice
models such as quantum magnets, lattice bosons, and strongly correlated fermion
systems. The code development is centered on common XML and HDF5 data formats,
libraries to simplify and speed up code development, common evaluation and
plotting tools, and simulation programs. The programs enable non-experts to
start carrying out serial or parallel numerical simulations by providing basic
implementations of the important algorithms for quantum lattice models:
classical and quantum Monte Carlo (QMC) using non-local updates, extended
ensemble simulations, exact and full diagonalization (ED), the density matrix
renormalization group (DMRG) both in a static version and a dynamic
time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for
dynamical mean field theory (DMFT). The ALPS libraries provide a powerful
framework for programers to develop their own applications, which, for
instance, greatly simplify the steps of porting a serial code onto a parallel,
distributed memory machine. Major changes in release 2.0 include the use of
HDF5 for binary data, evaluation tools in Python, support for the Windows
operating system, the use of CMake as build system and binary installation
packages for Mac OS X and Windows, and integration with the VisTrails workflow
provenance tool. The software is available from our web server at
http://alps.comp-phys.org/.Comment: 18 pages + 4 appendices, 7 figures, 12 code examples, 2 table
Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov.
The family Chlamydiaceae currently comprises a single genus Chlamydia, with 11 validly published species and seven more taxa. It includes the human pathogens Chlamydia (C.) trachomatis, C. pneumoniae and C. psittaci, a zoonotic agent causing avian chlamydiosis and human psittacosis, as well as other proven or potential pathogens in ruminants, birds, snakes, reptiles and turtles. During routine testing of 15 apparently healthy captive flamingos in a zoo in 2011, an atypical strain of Chlamydiaceae was detected by real-time PCR of cloacal swab samples. Sequence analysis of the 16S rRNA gene revealed high similarity to the uncultured Chlamydiales bacterium clone 122, which previously had been found in gulls. As more samples were collected during annual campaigns of the flamingo ringing program in southern France from 2012 to 2015, Chlamydiaceae-specific DNA was detected by PCR in 30.9% of wild birds. From these samples, three strains were successfully grown in cell culture. Ultrastructural analysis, comparison of 16S and 23S rRNA gene sequences, whole-genome analysis based on de novo hybrid-assembled sequences of the new strains as well as subsequent calculation of taxonomic parameters revealed that the relatedness of the flamingo isolates to established members of the family Chlamydiaceae was sufficiently distant to indicate that the three strains belong to two distinct species within a new genus. Based on these data, we propose the introduction of Chlamydiifrater gen. nov., as a new genus, and Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov., as two new species of the genus.Martin Hölzer appreciates the support of the Joachim Herz Foundation by the add-on fellowship for interdisciplinary life science.Peer reviewe
The role of P2 receptors in controlling infections by intracellular pathogens
A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens
Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin
Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician
Genomic Analysis of an Attenuated Chlamydia abortus Live Vaccine Strain Reveals Defects in Central Metabolism and Surface Proteins▿ †
Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydia abortus and its nitrosoguanidine-induced, temperature-sensitive, virulence-attenuated live vaccine derivative identified 22 single nucleotide polymorphisms unique to the mutant, including nine nonsynonymous mutations, one leading to a truncation of pmpG, which encodes a polymorphic membrane protein, and two intergenic mutations potentially affecting promoter sequences. Other nonsynonymous mutations mapped to a pmpG pseudogene and to predicted coding sequences encoding a putative lipoprotein, a sigma-54-dependent response regulator, a PhoH-like protein, a putative export protein, two tRNA synthetases, and a putative serine hydroxymethyltransferase. One of the intergenic mutations putatively affects transcription of two divergent genes encoding pyruvate kinase and a putative SOS response nuclease, respectively. These observations suggest that the temperature-sensitive phenotype and associated virulence attenuation of the vaccine strain result from disrupted metabolic activity due to altered pyruvate kinase expression and/or alteration in the function of one or more membrane proteins, most notably PmpG and a putative lipoprotein
Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota
© FEMS 2015. In humans, the vaginal microbiota is thought to be the first line of defense again pathogens including Chlamydia trachomatis. The guinea pig has been extensively used as a model to study chlamydial infection because it shares anatomical and physiological similarities with humans, such as a squamous vaginal epithelium as well as some of the long-term outcomes caused by chlamydial infection. In this study, we aimed to evaluate the guinea pig-C. caviae model of genital infection as a surrogate for studying the role of the vaginal microbiota in the early steps of C. trachomatis infection in humans. We used culture-independent molecular methods to characterize the relative and absolute abundance of bacterial phylotypes in the guinea pig vaginal microbiota in animals non-infected, mock-infected or infected by C. caviae. We showed that the guinea pig and human vaginal microbiotas are of different bacterial composition and abundance. Chlamydia caviae infection had a profound effect on the absolute abundance of bacterial phylotypes but not on the composition of the guinea pig vaginal microbiota. Our findings compromise the validity of the guinea pig-C. caviae model to study the role of the vaginal microbiota during the early steps of sexually transmitted infection
- …