612 research outputs found
Intrinsic Josephson Effects in the Magnetic Superconductor RuSr2GdCu2O8
We have measured interlayer current transport in small sized RuSr2GdCu2O8
single crystals. We find a clear intrinsic Josephson effect showing that the
material acts as a natural
superconductor-insulator-ferromagnet-insulator-superconductor superlattice. So
far, we detected no unconventional behavior due to the magnetism of the RuO2
layers.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Synthesis effects on the magnetic and superconducting properties of RuSr2GdCu2O8
A systematic study on the synthesis of the Ru-1212 compound by preparing a
series of samples that were annealed at increasing temperatures and then
quenched has been performed. It results that the optimal temperature for the
annealing lies around 1060-1065 C; a further temperature increase worsens the
phase formation. Structural order is very important and the subsequent grinding
and annealing improves it. Even if from the structural point of view the
samples appear substantially similar, the physical characterization highlight
great differences both in the electrical and magnetic properties related to
intrinsic properties of the phase as well as to the connection between the
grains as inferred from the resistive and the Curie Weiss behaviour at high
temperature as well as in the visibility of ZFC anf FC magnetic signals.Comment: 17 pages, 12 figures. Proc. Int. Workshop " Ruthenate and
rutheno-cuprate materials: theory and experiments", Vietri, October 2001. To
be published on LNP Series, Springer Verlag, Berlin, C. Noce, A. Vecchione,
M. Cuoco, A. Romano Eds, 200
Decoupling of superconducting layers in magnetic superconductor RuSr_{2}GdCu_{2}O_{8}
We propose the model for magnetic properties of the magnetic superconductor
RuSrGdCuO, which incorporates the theory of the
superconducting/ferromagnetic multilayers. The transition line , on
which the Josephson coupled superconducting planes are decoupled, i.e. , is calculated as a function of the exchange energy . As the
result of this decoupling a nonmonotonic behavior of magnetic properties, like
the lower critical field , Josephson plasma frequency, etc. is realized
near (or by crossing) the line. The obtained results are used in
analyzing the newly discovered antiferromagnetic ruthenocuprate
RuSrGdCuO with possible weak ferromagnetic order in the RuO
planes.Comment: 12 pages, 3 figs embede
Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3
CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be
close to magnetic ordering. Magnetic studies of single crystal and
polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that
spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for
effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal,
indicates presence of Ru^{5+}. At higher Cu concentrations more complex
magnetic behaviors are observed. Electrical resistivity measured on
polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for
only 2 at.% Cu. Charge compensation, which is assumed to be present upon
Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of
oxygen vacancies in crystal structure. Since the observed changes in physical
properties are completely attributable to the charge compensation, they cannot
be related to behaviors of pure compound where no such mechanism is present.
This study provides the criterion for "good" chemical probes for studying
Ru-based perovskites.Comment: 12 pages, 7 figure
A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8
We have performed susceptibility, thermopower, dc resistance and microwave
measurements on RuSr2EuCu2O8. This compound has recently been shown to display
the coexistence of both superconducting and magnetic order. We find clear
evidence of changes in the dc and microwave resistance near the magnetic
ordering temperature (132 K). The intergranular effects were separated from the
intragranular effects by performing microwave measurements on a sintered
ceramic sample as well as on a powder sample dispersed in an epoxy resin. We
show that the data can be interpreted in terms of the normal-state resistivity
being dominated by the CuO2 layers with exchange coupling to the Ru moments in
the RuO2 layers. Furthermore, most of the normal-state semiconductor-like
upturn in the microwave resistance is found to arise from intergranular
transport. The data in the superconducting state can be consistently
interpreted in terms of intergranular weak-links and an intragranular
spontaneous vortex phase due to the ferromagnetic component of the
magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys.
Rev.
Superconducting properties of RuSr2GdCu2O8 studied by SQUID magnetometry
For polycrystalline RuSr2GdCu2O8 (Ru-1212), distinct peaks have been reported
in d.c. magnetization in the superconducting state of the sample. Sr2GdRuO6
(Sr-2116), the precursor for the preparation of Ru-1212, shows similar peaks in
the same temperature regime. Based on measurements performed on both bulk and
powdered samples of Ru-1212 and Sr-2116, we exclude the possibility, that the
observed behavior of the magnetization of Ru-1212 is due to Sr-2116 impurities.
The effect is related to the superconductivity of Ru-1212, but it is not an
intrinsic property of this compound. We provide evidence that the observation
of magnetization peaks in the superconducting state of Ru-1212 is due to flux
motion generated by the movement of the sample in an inhomogeneous field,
during the measurement in the SQUID magnetometer. We propose several tests,
that help to decide, whether the features observed in a SQUID magnetization
measurement of Ru-1212 represent a property of the compound or not.Comment: 22 pages, 9 figure
Evidence for Possible Phase-Separations in RuSr2(Gd,Ce)2Cu2O10-delta
An unusual thermal-magnetic hysteresis was observed between a minor magnetic
transition around 120 K and the main one at 80 K in superconducting
RuSr2(R,Ce)2Cu2O10-delta (Ru1222R) samples, where R = Gd or Eu, down to a
submicron length-scale. The observation suggests a possible phase-separation
and is consistent with the very small but universal demagnetizing factor
observed, which is difficult to reconcile with the canted spin-structure
previously proposed. In such a scenario, the unusual superconducting properties
of the Ru-based cuprates can also be understood naturally.Comment: 8 pages, 3 figures, submitted to Phys. Rev. B, "Rapid Communications"
(September 26, 2001
Decoupled CuO_2 and RuO_2 layers in superconducting and magnetically ordered RuSr_2GdCu_2O_8
Comprehensive measurements of dc and ac susceptibility, dc resistance,
magnetoresistance, Hall resistivity, and microwave absorption and dispersion in
fields up to 8 T have been carried out on RuSr_2GdCu_2O_8 with the aim to
establish the properties of RuO_2 and CuO_2 planes. At ~130 K, where the
magnetic order develops in the RuO_2 planes, one observes a change in the slope
of dc resistance, change in the sign of magnetoresistance, and the appearance
of an extraordinary Hall effect. These features indicate that the RuO_2 planes
are conducting. A detailed analysis of the ac susceptibility and microwave data
on both, ceramic and powder samples show that the penetration depth remains
frequency dependent and larger than the London penetration depth even at low
temperatures. We conclude that the conductivity in the RuO_2 planes remains
normal even when superconducting order is developed in the CuO_2 planes below
\~45 K. Thus, experimental evidence is provided in support of theoretical
models which base the coexistence of superconductivity and magnetic order on
decoupled CuO_2 and RuO_2 planes.Comment: 11 pages, 11 figures, submitted to PR
Josephson Plasma in RuSr2GdCu2O8
Josephson plasma in RuSrGdCuO,
RuSrGdCuO (x = 0.3), and
RuSrEuCeCuO (x = 0.5) compounds is
investigated by the sphere resonance method. The Josephson plasma is observed
in a low-frequency region (around 8.5 cm at T ) for
ferromagnetic RuSrGdCuO, while it increases to 35 cm
for non-ferromagnetic RuSrGdCuO (x = 0.3), which
represents a large reduction in the Josephson coupling at ferromagnetic
RuO block layers. The temperature dependence of the plasma does not shift
to zero frequency ({\it i.e.} = 0) at low temperatures, indicating that
there is no transition from the 0-phase to the -phase in these compounds.
The temperature dependence and the oscillator strength of the peak are
different from those of other non-magnetic cuprates, and the origins of these
anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com
Study of the crystal structure, superconducting and magnetic properties of Ru1-xFexSr2GdCu2O8
Samples of the Ru1-xFexSr2GdCu2O8 system with x = 0, 0.025, 0.05, 0.075, 0.1
and 0.2, were prepared and their structural, superconducting and magnetic
properties were studied. Rietveld refinement of the X-ray diffraction patterns
show that the Fe substitution occurs in both Ru and Cu sites. An increase of Fe
concentration produces no significant changes in the bond angle Ru-O(3)-Ru,
which is a measure of the rotation of the RuO6 octahedra around the c-axis, and
also in the bond angle Ru-O(1)-Cu, which is a measure of the canting of the
RuO6 octahedra. On the other hand, the bond angle Cu-O(2)-Cu, which is a
measure of the buckling of the CuO2 layer, has a slight tendency to decrease
with the increase of the Fe content. We found thet both ferromagnetic and
superconducting transition temperatures are reduced with the increase of Fe
concentration. Analisys related to the decay of the superconducting and
ferromagnetic states is presented.Comment: 9 pages, 7 figure
- …