46 research outputs found

    Diagnosis of Non-Small Cell Lung Cancer via Liquid Biopsy Highlighting a <em>Fluorescence-in-situ-Hybridization</em> Circulating Tumor Cell Approach

    Get PDF
    Lung cancer (LC), is the most common and lethal cancer worldwide. It affects both sexes and in its early stages is clinically silent, until it reaches a more advanced stage, when it becomes highly incurable. In order to improve the high mortality associated with LC there has been an urgent need for screening high risk patients by low dose CT scan (LDCT) for the early detection of small resectable malignant tumors. However, while highly sensitive to detect small lung nodules, LDCT is non-specific, resulting in a compelling need for a complementary diagnostic tool. For example, a non-invasive blood test or liquid biopsy, (LB), could prove quite useful to confirm a diagnosis of malignancy prior to definitive therapy. With the advent of LB becoming increasingly clinically accepted in the diagnosis and management of LC, there has been an explosion of publications highlighting new technologies for the isolation of and detection of circulating tumor cells (CTCs) and cell free tumor DNA (cfDNA). The enormous potential for LB to play an important role in the diagnosis and management of LC to obtain valuable diagnostic information via an approach that may yield equivalent information to a surgical biopsy, regarding the presence of cancer and its molecular landscape is described

    MicroRNA profiles discriminate among colon cancer metastasis

    Get PDF
    MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor

    Immunoglobulin gene repertoire diversification and selection in the stomach – from gastritis to gastric lymphomas

    No full text
    Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood.We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori) had similarly diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample) presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL
    corecore