11,903 research outputs found

    Dynamical effects of a one-dimensional multibarrier potential of finite range

    Get PDF
    We discuss the properties of a large number N of one-dimensional (bounded) locally periodic potential barriers in a finite interval. We show that the transmission coefficient, the scattering cross section σ\sigma, and the resonances of σ\sigma depend sensitively upon the ratio of the total spacing to the total barrier width. We also show that a time dependent wave packet passing through the system of potential barriers rapidly spreads and deforms, a criterion suggested by Zaslavsky for chaotic behaviour. Computing the spectrum by imposing (large) periodic boundary conditions we find a Wigner type distribution. We investigate also the S-matrix poles; many resonances occur for certain values of the relative spacing between the barriers in the potential

    Drift rate control of a Brownian processing system

    Full text link
    A system manager dynamically controls a diffusion process Z that lives in a finite interval [0,b]. Control takes the form of a negative drift rate \theta that is chosen from a fixed set A of available values. The controlled process evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU, where X is a (0,\sigma) Brownian motion, and L and U are increasing processes that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier at Z=b, respectively. The cumulative cost process increases according to the differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a nondecreasing cost of control and p>0 is a penalty rate associated with displacement at the upper boundary. The objective is to minimize long-run average cost. This problem is solved explicitly, which allows one to also solve the following, essentially equivalent formulation: minimize the long-run average cost of control subject to an upper bound constraint on the average rate at which U increases. The two special problem features that allow an explicit solution are the use of a long-run average cost criterion, as opposed to a discounted cost criterion, and the lack of state-related costs other than boundary displacement penalties. The application of this theory to power control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fast Structuring of Radio Networks for Multi-Message Communications

    Full text link
    We introduce collision free layerings as a powerful way to structure radio networks. These layerings can replace hard-to-compute BFS-trees in many contexts while having an efficient randomized distributed construction. We demonstrate their versatility by using them to provide near optimal distributed algorithms for several multi-message communication primitives. Designing efficient communication primitives for radio networks has a rich history that began 25 years ago when Bar-Yehuda et al. introduced fast randomized algorithms for broadcasting and for constructing BFS-trees. Their BFS-tree construction time was O(Dlog2n)O(D \log^2 n) rounds, where DD is the network diameter and nn is the number of nodes. Since then, the complexity of a broadcast has been resolved to be TBC=Θ(DlognD+log2n)T_{BC} = \Theta(D \log \frac{n}{D} + \log^2 n) rounds. On the other hand, BFS-trees have been used as a crucial building block for many communication primitives and their construction time remained a bottleneck for these primitives. We introduce collision free layerings that can be used in place of BFS-trees and we give a randomized construction of these layerings that runs in nearly broadcast time, that is, w.h.p. in TLay=O(DlognD+log2+ϵn)T_{Lay} = O(D \log \frac{n}{D} + \log^{2+\epsilon} n) rounds for any constant ϵ>0\epsilon>0. We then use these layerings to obtain: (1) A randomized algorithm for gathering kk messages running w.h.p. in O(TLay+k)O(T_{Lay} + k) rounds. (2) A randomized kk-message broadcast algorithm running w.h.p. in O(TLay+klogn)O(T_{Lay} + k \log n) rounds. These algorithms are optimal up to the small difference in the additive poly-logarithmic term between TBCT_{BC} and TLayT_{Lay}. Moreover, they imply the first optimal O(nlogn)O(n \log n) round randomized gossip algorithm

    Efficiency at optimal work from finite reservoirs: a probabilistic perspective

    Full text link
    We revisit the classic thermodynamic problem of maximum work extraction from two arbitrary sized hot and cold reservoirs, modelled as perfect gases. Assuming ignorance about the extent to which the process has advanced, which implies an ignorance about the final temperatures, we quantify the prior information about the process and assign a prior distribution to the unknown temperature(s). This requires that we also take into account the temperature values which are regarded to be unphysical in the standard theory, as they lead to a contradiction with the physical laws. Instead in our formulation, such values appear to be consistent with the given prior information and hence are included in the inference. We derive estimates of the efficiency at optimal work from the expected values of the final temperatures, and show that these values match with the exact expressions in the limit when any one of the reservoirs is very large compared to the other. For other relative sizes of the reservoirs, we suggest a weighting procedure over the estimates from two valid inference procedures, that generalizes the procedure suggested earlier in [J. Phys. A: Math. Theor. {\bf 46}, 365002 (2013)]. Thus a mean estimate for efficiency is obtained which agrees with the optimal performance to a high accuracy.Comment: 14 pages, 6 figure

    Reply to a Commentary "Asking photons where they have been without telling them what to say"

    Get PDF
    Interesting objections to conclusions of our experiment with nested interferometers raised by Salih in a recent Commentary are analysed and refuted.Comment: Published version (Frontiers in Physics) to revised version of the Commentar

    Quaternion normalization in additive EKF for spacecraft attitude determination

    Get PDF
    This work introduces, examines, and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter (EKF) to spacecraft attitude determination, which is based on vector measurements. Two new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstrate the performance of all three schemes. A fourth scheme is suggested for future research. Although the schemes were tested for spacecraft attitude determination, the conclusions are general and hold for attitude determination of any three dimensional body when based on vector measurements, and use an additive EKF for estimation, and the quaternion for specifying the attitude

    Quaternion normalization in spacecraft attitude determination

    Get PDF
    Attitude determination of spacecraft usually utilizes vector measurements such as Sun, center of Earth, star, and magnetic field direction to update the quaternion which determines the spacecraft orientation with respect to some reference coordinates in the three dimensional space. These measurements are usually processed by an extended Kalman filter (EKF) which yields an estimate of the attitude quaternion. Two EKF versions for quaternion estimation were presented in the literature; namely, the multiplicative EKF (MEKF) and the additive EKF (AEKF). In the multiplicative EKF, it is assumed that the error between the correct quaternion and its a-priori estimate is, by itself, a quaternion that represents the rotation necessary to bring the attitude which corresponds to the a-priori estimate of the quaternion into coincidence with the correct attitude. The EKF basically estimates this quotient quaternion and then the updated quaternion estimate is obtained by the product of the a-priori quaternion estimate and the estimate of the difference quaternion. In the additive EKF, it is assumed that the error between the a-priori quaternion estimate and the correct one is an algebraic difference between two four-tuple elements and thus the EKF is set to estimate this difference. The updated quaternion is then computed by adding the estimate of the difference to the a-priori quaternion estimate. If the quaternion estimate converges to the correct quaternion, then, naturally, the quaternion estimate has unity norm. This fact was utilized in the past to obtain superior filter performance by applying normalization to the filter measurement update of the quaternion. It was observed for the AEKF that when the attitude changed very slowly between measurements, normalization merely resulted in a faster convergence; however, when the attitude changed considerably between measurements, without filter tuning or normalization, the quaternion estimate diverged. However, when the quaternion estimate was normalized, the estimate converged faster and to a lower error than with tuning only. In last years, symposium we presented three new AEKF normalization techniques and we compared them to the brute force method presented in the literature. The present paper presents the issue of normalization of the MEKF and examines several MEKF normalization techniques

    Solid-state electronic spin coherence time approaching one second

    Full text link
    Solid-state electronic spin systems such as nitrogen-vacancy (NV) color centers in diamond are promising for applications of quantum information, sensing, and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time (T2T_2) of NV centers compared to previous measurements: T20.5T_2 \approx 0.5 s at 77 K, which enables 107\sim 10^7 coherent NV spin manipulations before decoherence. We employed dynamical decoupling pulse sequences to suppress NV spin decoherence due to magnetic noise, and found that T2T_2 is limited to approximately half of the longitudinal spin relaxation time (T1T_1) over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of NV spins and do not depend on the optimal choice of a specific NV, which could advance quantum sensing, enable squeezing and many-body entanglement in solid-state spin ensembles, and open a path to simulating a wide range of driven, interaction-dominated quantum many-body Hamiltonians

    Denaturation of Circular DNA: Supercoil Mechanism

    Full text link
    The denaturation transition which takes place in circular DNA is analyzed by extending the Poland-Scheraga model to include the winding degrees of freedom. We consider the case of a homopolymer whereby the winding number of the double stranded helix, released by a loop denaturation, is absorbed by \emph{supercoils}. We find that as in the case of linear DNA, the order of the transition is determined by the loop exponent cc. However the first order transition displayed by the PS model for c>2c>2 in linear DNA is replaced by a continuous transition with arbitrarily high order as cc approaches 2, while the second-order transition found in the linear case in the regime 1<c21<c\le2 disappears. In addition, our analysis reveals that melting under fixed linking number is a \emph{condensation transition}, where the condensate is a macroscopic loop which appears above the critical temperature.Comment: 9 pages, 4 figure
    corecore