2,874 research outputs found
The infra-red spectrum and molecular structure of HNCS
From an examination of the microwave spectra of four isotopic species of isothiocyanic acid, Beard and Dailey (1) recently obtained the following values for the molecular parameters in the ground vibrational state
Improving Mars-GRAM: Increasing the Accuracy of Sensitivity Studies at Large Optical Depths
Extensively utilized for numerous mission applications, the Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model. In a Monte-Carlo mode, Mars-GRAM's perturbation modeling capability is used to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM has been found to be inexact when used during the Mars Science Laboratory (MSL) site selection process for sensitivity studies for MapYear=0 and large optical depth values such as tau=3. Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM) from the surface to 80 km altitude. Mars-GRAM with the MapYear parameter set to 0 utilizes results from a MGCM run with a fixed value of tau=3 at all locations for the entire year. Imprecise atmospheric density and pressure at all altitudes is a consequence of this use of MGCM with tau=3. Density factor values have been determined for tau=0.3, 1 and 3 as a preliminary fix to this pressure-density problem. These factors adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. These density factors are fixed values for all latitudes and Ls and are included in Mars-GRAM Release 1.3. Work currently being done, to derive better multipliers by including variations with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data, will be highlighted in the presentation. The TES limb data utilized in this process has been validated by a comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS). This comparison study was undertaken for locations on Mars of varying latitudes, Ls, and LTST. The more precise density factors will be included in Mars-GRAM 2005 Release 1.4 and thus improve the results of future sensitivity studies done for large optical depths
Absorption Bands of Hydrogen Cyanide Gas in the Near Infrared
The absorption spectrum of gaseous hydrogen cyanide has been investigated by photographic methods in the region λ7000-9200. Two weak bands of very simple structure were found, having P and R branches but no Q branches. The band at λ7912 is apparently a harmonic of a fundamental band at 3.04μ, and the very weak band at λ8563 is a combination band. The hydrogen cyanide molecule is linear in the normal state, and has a moment of inertia I=18.79×10^-40 g·cm^2. The distance of separation of the carbon and nitrogen atoms is estimated to be 1.15×10^-8 cm. Hydrogen cyanide is discussed in regard to its three fundamental oscillations which have frequencies 3290, 2090, and 710, respectively, and in regard to its dissociation energy and dissociation products. The evidence requires a molecular structure represented by the formula HCN, and shows that the normal molecule is built from a normal hydrogen atom and a normal CN radical. The absorption of cyanogen gas has also been investigated in the photographic infrared, but no absorption bands could be detected
Updating Mars-GRAM to Increase the Accuracy of Sensitivity Studies at Large Optical Depths
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). During the Mars Science Laboratory (MSL) site selection process, it was discovered that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear set to 0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. As a preliminary fix to this pressure-density problem, density factor values were determined for tau=0.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented from work being done to derive better multipliers by including variation with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data. The addition of these more precise density factors to Mars-GRAM 2005 Release 1.4 will improve the results of the sensitivity studies done for large optical depths
Loop amplitudes in gauge theories: modern analytic approaches
This article reviews on-shell methods for analytic computation of loop
amplitudes, emphasizing techniques based on unitarity cuts. Unitarity
techniques are formulated generally but have been especially useful for
calculating one-loop amplitudes in massless theories such as Yang-Mills theory,
QCD, and QED.Comment: 34 pages. Invited review for a special issue of Journal of Physics A
devoted to "Scattering Amplitudes in Gauge Theories." v2: typesetting macro
error fixe
Photon-Graviton Amplitudes from the Effective Action
We report on the status of an ongoing effort to calculate the complete
one-loop low-energy effective actions in Einstein-Maxwell theory with a massive
scalar or spinor loop, and to use them for obtaining the explicit form of the
corresponding M-graviton/N-photon amplitudes. We present explicit results for
the effective actions at the one-graviton four-photon level, and for the
amplitudes at the one-graviton two-photon level. As expected on general
grounds, these amplitudes relate in a simple way to the corresponding
four-photon amplitudes. We also derive the gravitational Ward identity for the
1PI one-graviton -- N photon amplitude.Comment: 9 pages, 2 figures, talk given by C. Schubert at "Supersymmetries and
Quantum Symmetries - SQS`2011", JINR Dubna, July 18 - 23, 2011 (to appear in
the Proceedings
Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths
Tree-Level Formalism
We review two novel techniques used to calculate tree-level scattering
amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the
MHV diagrams, we consider applications to tree-level amplitudes and focus in
particular on the N=4 supersymmetric formulation. We also briefly describe the
derivation of loop amplitudes using MHV diagrams. For the recursion relations,
after presenting their general proof, we discuss several applications to
massless theories with and without supersymmetry, to theories with massive
particles, and to graviton amplitudes in General Relativity. This article is an
invited review for a special issue of Journal of Physics A devoted to
"Scattering Amplitudes in Gauge Theories".Comment: 40 pages, 8 figures, invited review for a special issue of Journal of
Physics A devoted to "Scattering Amplitudes in Gauge Theories", R.
Roiban(ed), M. Spradlin(ed), A. Volovich(ed); v2: minor corrections,
references adde
Lactation and neonatal nutrition: defining and refining the critical questions.
This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond
- …
