19 research outputs found

    Interferon-Alpha Mediates Restriction of Human Immunodeficiency Virus Type-1 Replication in Primary Human Macrophages at an Early Stage of Replication

    Get PDF
    Type I interferons (IFNα and β) are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNα is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNα to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNα occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNα treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNα. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNα mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNα induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNα

    The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22

    Get PDF
    Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication

    Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes.

    Get PDF
    Alpha interferon (IFN-alpha) restricts multiple steps of the human immunodeficiency virus type 1 (HIV-1) life cycle. A well-described effect of IFN-alpha is in the modulation of viral nucleic acid synthesis. We demonstrate that IFN-alpha influences HIV-1 DNA synthesis principally by reducing the production of late products of reverse transcription. The magnitude of IFN-alpha-induced downregulation of HIV-1 DNA and/or progeny virion production was dependent on the IFN-alpha concentration, the duration of cytokine administration, the multiplicity of infection, the viral strain, and the cycles of viral infection. Interestingly, reductions in viral DNAs could not fully account for the observed IFN-alpha-induced abrogation of progeny virion production. These data, by our investigation of both single-cycle and spreading viral infections, support a predominant but not exclusive effect of IFN-alpha on viral DNA synthesis

    Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells.

    Get PDF
    Degradation of the extracellular matrix components elastin and collagen has been implicated in vascular diseases, including abdominal aortic aneurysm (AAA) and atherosclerotic plaque rupture. Increased expression of matrix metalloproteinases (MMPs) is involved in these disease processes. Our previous studies have demonstrated that MMP-2 derived from mesenchymal cells is required for aneurysm development in a murine model. Doxycycline is a nonspecific inhibitor of MMPs. In the present study, the mechanisms of the inhibitory effects of doxycycline on MMP-2 expression from cultured human aortic smooth muscle cells (SMCs) and human aortic aneurysm tissue explants were studied. Doxycycline inhibited MMP-2 expression from cultured SMCs in a concentration-dependent manner (5-40 microg/mL; inhibitory concentration of 50%, 6.5 microg/mL). At normal therapeutic serum concentration (5 microg/mL) doxycycline significantly reduced MMP-2 production from SMCs (37%; P <.05), which were stimulated with conditioned media from macrophage or lymphocyte co-culture simulating the inflammatory milieu of AAA tissue. This correlated with a decrease in MMP-2 mRNA half-life, from 49 hours to 28 hours, which suggests that doxycycline inhibits SMC MMP-2 production in part by reducing MMP-2 mRNA stability. When AAA tissue was cultured for 10 days with doxycycline at concentrations of 2.5 to 40 microg/mL, the media exhibited a concentration-dependent decrease in both active and latent forms of MMP-2 and MMP-9. Doxycycline at a concentration of 5 microg/mL reduced active and latent MMP-2 secreted from cultured AAA tissue by 50% and 30%, respectively (P <.05). These study findings demonstrate that doxycycline at standard therapeutic serum concentrations inhibits MMP-2 expression from cultured human aortic SMCs and AAA tissue explants. Inasmuch as MMP activity contributes to extracellular matrix degradation in AAAs and atherosclerotic plaque, doxycycline may have potential value in treating these diseases

    Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms.

    No full text
    Degradation of the elastic media is a hallmark of abdominal aortic aneurysms (AAAs). We examined the expression of 2 elastolytic matrix metalloproteinases (MMPs), MMP-2 and MMP-9, in AAA aortic tissues compared with those from atherosclerotic occlusive disease (AOD) and nondiseased control tissues. Quantitative competitive reverse transcription-polymerase chain reaction and gelatin zymography showed increased MMP-9 mRNA and protein in both AAA and AOD tissues compared with those in control tissue, but there was no significant difference between AAA and AOD. In contrast, MMP-2 mRNA and protein levels were significantly higher in AAA than in AOD or control tissues. Sequential extraction of the MMPs from the aortic tissue with a physiological salt solution, 2% dimethylsulfoxide (DMSO), and 10 mol/L urea showed that large amounts of MMP-2 and MMP-9 were bound to the matrix. The most conspicuous finding was that the levels of MMP-2 were significantly elevated in the DMSO fraction in AAA tissues compared with AOD and control tissues. In addition, a large portion of MMP-2 found in the DMSO and urea fractions was in the active 62-kDa form, indicating that the precursor of MMP-2 in AAA is largely activated locally and binds to the tissue matrix tightly. By immunolocalization, MMP-9 was found to be primarily produced by macrophages and MMP-2 by mesenchymal cells. The production of MMP-2 was prominent when mesenchymal cells were surrounded by inflammatory cells, suggesting paracrine modulation of MMP-2 expression in AAAs. These observations emphasize that MMP-2 participates in the progression of AAAs by degrading aortic tissue matrix components

    Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms.

    No full text
    Degradation of the elastic media is a hallmark of abdominal aortic aneurysms (AAAs). We examined the expression of 2 elastolytic matrix metalloproteinases (MMPs), MMP-2 and MMP-9, in AAA aortic tissues compared with those from atherosclerotic occlusive disease (AOD) and nondiseased control tissues. Quantitative competitive reverse transcription-polymerase chain reaction and gelatin zymography showed increased MMP-9 mRNA and protein in both AAA and AOD tissues compared with those in control tissue, but there was no significant difference between AAA and AOD. In contrast, MMP-2 mRNA and protein levels were significantly higher in AAA than in AOD or control tissues. Sequential extraction of the MMPs from the aortic tissue with a physiological salt solution, 2% dimethylsulfoxide (DMSO), and 10 mol/L urea showed that large amounts of MMP-2 and MMP-9 were bound to the matrix. The most conspicuous finding was that the levels of MMP-2 were significantly elevated in the DMSO fraction in AAA tissues compared with AOD and control tissues. In addition, a large portion of MMP-2 found in the DMSO and urea fractions was in the active 62-kDa form, indicating that the precursor of MMP-2 in AAA is largely activated locally and binds to the tissue matrix tightly. By immunolocalization, MMP-9 was found to be primarily produced by macrophages and MMP-2 by mesenchymal cells. The production of MMP-2 was prominent when mesenchymal cells were surrounded by inflammatory cells, suggesting paracrine modulation of MMP-2 expression in AAAs. These observations emphasize that MMP-2 participates in the progression of AAAs by degrading aortic tissue matrix components
    corecore