1,415 research outputs found
Alien Registration- Babin, John L. (Caribou, Aroostook County)
https://digitalmaine.com/alien_docs/25940/thumbnail.jp
Abuse of Trademarks: A Proposal for ompulsory Licensing
This article neither deals with the propriety of the Federal Trade Commission\u27s (FTC) proposed order nor evaluates the effectiveness of compulsory trademark licensing as a remedy for unfair trade practices.8 Rather, the pending cereal industry case is used as a point of departure for an examination of the problem of trademark abuse and the responses of the courts, the Congress, and the FTC to it. Acknowledging the legality of compulsory licensing of trademarks, the article suggests legislation which will incorporate licensing and standards for its application. Such legislation would make licensing an accessible remedy for trademark abuse while accommodating both consumer and competitor interests
Linear superposition in nonlinear wave dynamics
We study nonlinear dispersive wave systems described by hyperbolic PDE's in
R^{d} and difference equations on the lattice Z^{d}. The systems involve two
small parameters: one is the ratio of the slow and the fast time scales, and
another one is the ratio of the small and the large space scales. We show that
a wide class of such systems, including nonlinear Schrodinger and Maxwell
equations, Fermi-Pasta-Ulam model and many other not completely integrable
systems, satisfy a superposition principle. The principle essentially states
that if a nonlinear evolution of a wave starts initially as a sum of generic
wavepackets (defined as almost monochromatic waves), then this wave with a high
accuracy remains a sum of separate wavepacket waves undergoing independent
nonlinear evolution. The time intervals for which the evolution is considered
are long enough to observe fully developed nonlinear phenomena for involved
wavepackets. In particular, our approach provides a simple justification for
numerically observed effect of almost non-interaction of solitons passing
through each other without any recourse to the complete integrability. Our
analysis does not rely on any ansatz or common asymptotic expansions with
respect to the two small parameters but it uses rather explicit and
constructive representation for solutions as functions of the initial data in
the form of functional analytic series.Comment: New introduction written, style changed, references added and typos
correcte
Electrodynamics of balanced charges
In this work we modify the wave-corpuscle mechanics for elementary charges
introduced by us recently. This modification is designed to better describe
electromagnetic (EM) phenomena at atomic scales. It includes a modification of
the concept of the classical EM field and a new model for the elementary charge
which we call a balanced charge (b-charge). A b-charge does not interact with
itself electromagnetically, and every b-charge possesses its own elementary EM
field. The EM energy is naturally partitioned as the interaction energy between
pairs of different b-charges. We construct EM theory of b-charges (BEM) based
on a relativistic Lagrangian with the following properties: (i) b-charges
interact only through their elementary EM potentials and fields; (ii) the field
equations for the elementary EM fields are exactly the Maxwell equations with
proper currents; (iii) a free charge moves uniformly preserving up to the
Lorentz contraction its shape; (iv) the Newton equations with the Lorentz
forces hold approximately when charges are well separated and move with
non-relativistic velocities. The BEM theory can be characterized as
neoclassical one which covers the macroscopic as well as the atomic spatial
scales, it describes EM phenomena at atomic scale differently than the
classical EM theory. It yields in macroscopic regimes the Newton equations with
Lorentz forces for centers of well separated charges moving with
nonrelativistic velocities. Applied to atomic scales it yields a hydrogen atom
model with a frequency spectrum matching the same for the Schrodinger model
with any desired accuracy.Comment: Manuscript was edited to improve the exposition and to remove noticed
typo
Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing
Utilizing an eigenfunction decomposition, we study the growth and spectra of
energy in the vortical and wave modes of a 3D rotating stratified fluid as a
function of . Working in regimes characterized by moderate
Burger numbers, i.e. or , our results
indicate profound change in the character of vortical and wave mode
interactions with respect to . As with the reference state of
, for the wave mode energy saturates quite quickly
and the ensuing forward cascade continues to act as an efficient means of
dissipating ageostrophic energy. Further, these saturated spectra steepen as
decreases: we see a shift from to scaling for
(where and are the forcing and dissipation scales,
respectively). On the other hand, when the wave mode energy
never saturates and comes to dominate the total energy in the system. In fact,
in a sense the wave modes behave in an asymmetric manner about .
With regard to the vortical modes, for , the signatures of 3D
quasigeostrophy are clearly evident. Specifically, we see a scaling
for and, in accord with an inverse transfer of energy, the
vortical mode energy never saturates but rather increases for all . In
contrast, for and increasing, the vortical modes contain a
progressively smaller fraction of the total energy indicating that the 3D
quasigeostrophic subsystem plays an energetically smaller role in the overall
dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract
Decadal changes in Arctic Ocean Chlorophyll a: Bridging ocean color observations from the 1980s to present time
Remotely-sensed Ocean color data offer a unique opportunity for studying variations of bio-optical properties which is especially valuable in the Arctic Ocean (AO) where in situ data are sparse. In this study, we re-processed the raw data from the Sea-viewing Wide Field-of-View (SeaWiFS, 1998–2010) and the MODerate resolution Imaging Spectroradiometer (MODIS, 2003–2016) ocean-color sensors to ensure compatibility with the first ocean color sensor, namely, the Coastal Zone Color Scanner (CZCS, 1979–1986). Based on a bio-regional approach, this study assesses the quality of this new homogeneous pan-Arctic Chl a dataset, which provides the longest (but non-continuous) ocean color time-series ever produced for the AO (37 years long between 1979 and 2016). We show that despite the temporal gaps between 1986 and 1998 due to the absence of ocean color satellite, the time series is suitable to establish a baseline of phytoplankton biomass for the early 1980s, before sea-ice loss accelerated in the AO. More importantly, it provides the opportunity to quantify decadal changes over the AO revealing for instance the continuous Chl a increase in the inflow shelves such as the Barents Sea since the CZCS era
Neoclassical Theory of Elementary Charges with Spin of 1/2
We advance here our neoclassical theory of elementary charges by integrating
into it the concept of spin of 1/2. The developed spinorial version of our
theory has many important features identical to those of the Dirac theory such
as the gyromagnetic ratio, expressions for currents including the spin current,
and antimatter states. In our theory the concepts of charge and anticharge
relate naturally to their "spin" in its rest frame in two opposite directions.
An important difference with the Dirac theory is that both the charge and
anticharge energies are positive whereas their frequencies have opposite signs
- …