780 research outputs found
Charged Current Neutrino Cross Section and Tau Energy Loss at Ultra-High Energies
We evaluate both the tau lepton energy loss produced by photonuclear
interactions and the neutrino charged current cross section at ultra-high
energies, relevant to neutrino bounds with Earth-skimming tau neutrinos, using
different theoretical and phenomenological models for nucleon and nucleus
structure functions. The theoretical uncertainty is estimated by taking
different extrapolations of the structure function F2 to very low values of x,
in the low and moderate Q2 range for the tau lepton interaction and at high Q2
for the neutrino-nucleus inelastic cross section. It is at these extremely low
values of x where nuclear shadowing and parton saturation effects are unknown
and could be stronger than usually considered. For tau and neutrino energies
E=10^9 GeV we find uncertainties of a factor 4 for the tau energy loss and of a
factor 2 for the charged current neutrino-nucleus cross section.Comment: 20 pages and 11 figure
Charged lepton-nucleus inelastic scattering at high energies
The composite model is constructed to describe inelastic high-energy
scattering of muons and taus in standard rock. It involves photonuclear
interactions at low as well as moderate processes and the deep
inelastic scattering (DIS). In the DIS region the neutral current contribution
is taken into consideration. Approximation formulas both for the muons and tau
energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium
(ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to
Int.J.Mod.Phys.
Muon-Induced Background Study for Underground Laboratories
We provide a comprehensive study of the cosmic-ray muon flux and induced
activity as a function of overburden along with a convenient parameterization
of the salient fluxes and differential distributions for a suite of underground
laboratories ranging in depth from 1 to 8 km.w.e.. Particular attention
is given to the muon-induced fast neutron activity for the underground sites
and we develop a Depth-Sensitivity-Relation to characterize the effect of such
background in experiments searching for WIMP dark matter and neutrinoless
double beta decay.Comment: 18 pages, 28 figure
Graph Partitioning Induced Phase Transitions
We study the percolation properties of graph partitioning on random regular
graphs with N vertices of degree . Optimal graph partitioning is directly
related to optimal attack and immunization of complex networks. We find that
for any partitioning process (even if non-optimal) that partitions the graph
into equal sized connected components (clusters), the system undergoes a
percolation phase transition at where is the fraction of
edges removed to partition the graph. For optimal partitioning, at the
percolation threshold, we find where is the size of the
clusters and where is their diameter. Additionally,
we find that undergoes multiple non-percolation transitions for
Neutron production by cosmic-ray muons at shallow depth
The yield of neutrons produced by cosmic ray muons at a shallow depth of 32
meters of water equivalent has been measured. The Palo Verde neutrino detector,
containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic
served as a target. The rate of one and two neutron captures was determined.
Modeling the neutron capture efficiency allowed us to deduce the total yield of
neutrons neutrons per muon
and g/cm. This yield is consistent with previous measurements at similar
depths.Comment: 12 pages, 3 figure
Implication of Compensator Field and Local Scale Invariance in the Standard Model
We introduce Weyl's scale symmetry into the standard model (SM) as a local
symmetry. This necessarily introduces gravitational interactions in addition to
the local scale invariance group \tilde U(1) and the SM groups SU(3) X SU(2) X
U(1). The only other new ingredients are a new scalar field \sigma and the
gauge field for \tilde U(1) we call the Weylon. A noteworthy feature is that
the system admits the St\" uckelberg-type compensator. The \sigma couples to
the scalar curvature as (-\zeta/2) \sigma^2 R, and is in turn related to a St\"
uckelberg-type compensator \varphi by \sigma \equiv M_P e^{-\varphi/M_P} with
the Planck mass M_P. The particular gauge \varphi = 0 in the St\" uckelberg
formalism corresponds to \sigma = M_P, and the Hilbert action is induced
automatically. In this sense, our model presents yet another mechanism for
breaking scale invariance at the classical level. We show that our model
naturally accommodates the chaotic inflation scenario with no extra field.Comment: This work is to be read in conjunction with our recent comments
hep-th/0702080, arXiv:0704.1836 [hep-ph] and arXiv:0712.2487 [hep-ph]. The
necessary ingredients for describing chaotic inflation in the SM as
entertained by Bezrukov and Shaposhnikov [17] have been provided by our
original model [8]. We regret their omission in citing our original model [8
Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection
In this work we report the performances and the chemical and physical
properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd
up to ~0.1%, and the results of a 2 year long stability survey. In particular
we have monitored the amount of both Gd and primary fluor actually in solution,
the optical and fluorescent properties of the Gd-doped liquid scintillator
(GdLS) and its performances as a neutron detector, namely neutron capture
efficiency and average capture time. The experimental survey is ongoing, the
target being continuously monitored. After two years from the doping time the
performances of the Gd-doped liquid scintillator do not show any hint of
degradation and instability; this conclusion comes both from the laboratory
measurements and from the "in-tank" measurements. This is the largest stable
Gd-doped organic liquid scintillator target ever produced and continuously
operated for a long period
- …
