21 research outputs found

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Biofortification with nanoparticles and zinc nitrate plus chitosan in green beans: effects on yield and mineral content

    No full text
    Approximately 33% of the world's population is affected by Zinc (Zn) deficiency, making it the fifth leading cause of human disease and mortality. An innovative strategy to this problem in the food diet is biofortification. Therefore, the use of nanotechnology emerges as a possible way to achieve the optimal development of plants in a sustainable and precise way. The objective of the present study was to increase the Zn content in bean plants cv. ‘Strike’, through the application of nanoparticles versus Zn nitrate plus chitosan. Two sources of Zn were applied via foliar: Zn nanoparticles and Zn nitrate at doses of 0, 25, 50 and 100 ppm with and without chitosan. The results indicate that the application of Zn favours the biofortification process, finding increases for all the treatments used. The treatments that stood out were Zn nitrate plus chitosan at 50 and 100 ppm, which increased the Zn content in fruits by more than 110%. The application of Zn nanoparticles at 25 ppm and Zn nitrate at 50 ppm favoured biomass accumulation and production. Furthermore, the addition of chitosan helped biomass and yield, especially when combined with Zn nitrate. Finally, indicate that a greater number of studies are required regarding the use of nanoparticles and chitosan in horticulture to determine with certainty their effect on the physiology and nutrition of plants

    Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate

    No full text
    Materials play a fundamental role in any branch of civil engineering. From ancient times to the present day, society has required enormous amounts of construction materials, which implies an excessive exploitation of the natural environment. The present research work consisted in the design and development of asphalt mixes with a partial substitution of the natural aggregate (NA) by means of recycled concrete aggregate (RCA). The mix was designed with the Marshall methodology, considering the next percentages of substitution and addition by mass: 90% NA and 10% RCA; 80% NA and 20% RCA; 70% NA and 30% RCA. The mixtures were elaborated and analysed under the international standards and the Mexican regulation of the Communications and Transport Ministry, to determine the best option regarding their performance. The materials were characterized according to the current regulations and later employed in the mixes design. A total of 38 specimens were elaborated for each mixture, determining the optimum asphalt content; after that, mechanical tests were performed to analyse and determine the best results. In the aftermath of the examination of all mixtures, we concluded that the 70%AN/30%RCA is the best alternative option according to its performance and numeric results, complying with the cited regulations, and allowing a lower content of asphalt during the process
    corecore