14 research outputs found

    AKT activation seems to be associated with apoptotic signals and not with pro-survival signals in a pristane-induced lupus model.

    Get PDF
    Several studies have shown that in addition to its role as a survival factor and tumor promoting agent, AKT is also able to exhibit pro-apoptotic effects under diverse conditions, including oxidative stress, cytokine stimulation and exposure to cytotoxic chemicals like staurosporine, methotrexate, docetaxel and etoposide. Moreover, phosphorylation of second mitochondria-derived activator of caspases (SMAC) by AKT promotes caspase-3 activation during etoposide-induced apoptosis in HeLa cells. Our data show that injection of pristane into the peritoneum induces apoptosis-mediated cell death of peritoneal exudate cells (PECs), as evidenced by the increased number of annexin V+ peritoneal cells and their increased levels of cleaved/active caspase-3. Indeed, the higher levels of activated caspase-3 protein in WT PECs, particularly at 2-weeks post pristane treatment, are indicative of a higher rate of apoptosis compared to Cd38¿/¿ cells. In contrast, no differences were observed in the levels of MCL-1, an anti-apoptotic protein and member of the BCL2 family. Furthermore, kinases ERK1/2 and AKT showed distinct activation kinetics in pristane-elicited PECs. Interestingly, caspase-3 activation followed similar kinetics to AKT activation in both WT and Cd38¿/¿ PECs, while ERK activation correlated with increased levels of MCL-1. In summary our data strongly suggest that in the pristane-induced lupus model AKT activation is associated with apoptotic signals and not with survival signals. Further studies, however, are required to identify specific pro- and anti-apoptotic target proteins that are phosphorylated by ERK or AKT following pristane treatment, and that regulate the apoptotic process

    The effects of using crab zoeae (Maja brachydactyla) on growth and biochemical composition of Octopus vulgaris (Cuvier 1797) paralarvae

    No full text
    Octopus vulgaris farming at large scale can only be attained using live prey during the paralarvae stage. Presently, only Artemia complies with this requirement. Nevertheless, its sole use delivers poor paralarvae growth and survival. Some species of marine zooplankton are better prey for marine fish larvae compared to Artemia, since its composition is richer in several important nutritional components. Among these are phospholipids and specific fatty acids, namely docosahexaenoic acid, eicosapentaenoic acid and arachidonic acid. During the present experiment, octopus paralarvae were fed a co-feeding scheme of spider crab (Maja brachydactyla) zoeae and Artemia (1:2, Artemia/Crab zoeae). The use of spider crab zoeae was justified by their availability in commercial facilities, where adult spider crabs are maintained to be sold to the public. There, fecund and spawning females are present in large numbers, and zoeae availability is often high and implies no production or zoeae collection costs. O. vulgaris paralarvae fed on Artemia and crab zoeae grew larger (3.00 ± 0.56 mg dw−1) after 30 days, compared to previous published papers. Also, the paralarvae lipid content was substantially enhanced in highly unsaturated fatty acids and phospholipids. However, survival after 30 days was still very low (1.75 % after 30 days) and needs to be greatly improved.Publicado
    corecore