848 research outputs found

    Paramagnetic reentrant effect in high purity mesoscopic AgNb proximity structures

    Full text link
    We discuss the magnetic response of clean Ag coated Nb proximity cylinders in the temperature range 150 \mu K < T < 9 K. In the mesoscopic temperature regime, the normal metal-superconductor system shows the yet unexplained paramagnetic reentrant effect, discovered some years ago [P. Visani, A. C. Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990)], superimposing on full Meissner screening. The logarithmic slope of the reentrant paramagnetic susceptibility chi_para(T) \propto \exp(-L/\xi_N) is limited by the condition \xi_N=n L, with \xi_N=\hbar v_F/2 \pi k_B T, the thermal coherence length and n=1,2,4. In wires with perimeters L=72 \mu m and L=130 \mu m, we observe integer multiples n=1,2,4. At the lowest temperatures, \chi_para compensates the diamagnetic susceptibility of the \textit{whole} AgNb structure.Comment: 4 pages, 4 figures (color

    Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms

    Full text link
    It is shown that lines of adsorbed hydrogen pair atoms divide the graphene sheet into strips and form hydrogen-based superlattice structures (2HG-SL). We show that the forming of 2HG-SL drastically changes the electronic properties of graphene from semimetal to semiconductor. The electronic spectra of "zigzag" (n,0) 2HG-SL is similar to that of (n,0) carbon nanotubes and have a similar oscillation of band gap with number n, but with non-zero minimal values. The composite dual-periodic (n,0)+(m,0) 2HG-SLs of "zigzag" strips are analyzed, with the conclusion that they may be treated as quasi-two-dimensional heterostructures. We also suggest an experimental way of fabricating hydrogen superlattices.Comment: 12 pages, 3 figure

    Calculated molecular structures and electronic spectra of the geometric isomers of a model carotenoid molecule, 6,11-dimethylhexadecaheptaene

    Full text link
    The molecular structures and the electronic spectra of the geometric isomers of a model carotenoid polyene, 6,11-dimethylhexadecaheptaene, were calculated. It was concluded that solvent effects and conformational isomerization must be taken into account in order to satisfactorily explain the observed spectra. Molecular structures were calculated using molecular mechanics (MM2), and electronic spectra using the VESCF-MO-CI method including all singly-excited configurations. A method based on the calculated and observed spectra of simple linear polyenes was devised to estimate the solvent effects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24585/1/0000868.pd

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021s−110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table

    Nanopercolation

    Full text link
    We investigate through direct molecular mechanics calculations the geometrical properties of hydrocarbon mantles subjected to percolation disorder. We show that the structures of mantles generated at the critical percolation point have a fractal dimension df≈2.5d_{f} \approx 2.5. In addition, the solvent access surface AsA_{s} and volume VsV_{s} of these molecules follow power-law behavior, As∼LαAA_{s} \sim L^{\alpha_A} and Vs∼LαVV_{s} \sim L^{\alpha_V}, where LL is the system size, and with both critical exponents αA\alpha_A and αV\alpha_V being significantly dependent on the radius of the accessing probing molecule, rpr_{p}. Our results from extensive simulations with two distinct microscopic topologies (i.e., square and honeycomb) indicate the consistency of the statistical analysis and confirm the self-similar characteristic of the percolating hydrocarbons. Due to their highly branched topology, some of the potential applications for this new class of disordered molecules include drug delivery, catalysis, and supramolecular structures.Comment: 4 pages, 5 figure

    Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System

    Full text link
    Rough surface effect on the Meissner diamagnetic current in the normal layer of proximity contact N-S bi-layer is investigated in the clean limit. The diamagnetic current and the screening length are calculated by use of quasi-classical Green's function. We show that the surface roughness has a sizable effect, even when a normal layer width is large compared with the coherence length ξ=vF/πTc\xi =v_{\rm F}/\pi T_{\rm c}. The effect is as large as that of the impurity scattering and also as that of the finite reflection at the N-S interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-

    Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers

    Full text link
    We have investigated the diamagnetic response of composite NS proximity wires, consisting of a clean silver or copper coating, in good electrical contact to a superconducting niobium or tantalum core. The samples show strong induced diamagnetism in the normal layer, resulting in a nearly complete Meissner screening at low temperatures. The temperature dependence of the linear diamagnetic susceptibility data is successfully described by the quasiclassical Eilenberger theory including elastic scattering characterised by a mean free path l. Using the mean free path as the only fit parameter we found values of l in the range 0.1-1 of the normal metal layer thickness d_N, which are in rough agreement with the ones obtained from residual resistivity measurements. The fits are satisfactory over the whole temperature range between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m. Although a finite mean free path is necessary to correctly describe the temperature dependence of the linear response diamagnetic susceptibility, the measured breakdown fields in the nonlinear regime follow the temperature and thickness dependence given by the clean limit theory. However, there is a discrepancy in the absolute values. We argue that in order to reach quantitative agreement one needs to take into account the mean free path from the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    Normal transport properties for a classical particle coupled to a non-Ohmic bath

    Full text link
    We study the Hamiltonian motion of an ensemble of unconfined classical particles driven by an external field F through a translationally-invariant, thermal array of monochromatic Einstein oscillators. The system does not sustain a stationary state, because the oscillators cannot effectively absorb the energy of high speed particles. We nonetheless show that the system has at all positive temperatures a well-defined low-field mobility over macroscopic time scales of order exp(-c/F). The mobility is independent of F at low fields, and related to the zero-field diffusion constant D through the Einstein relation. The system therefore exhibits normal transport even though the bath obviously has a discrete frequency spectrum (it is simply monochromatic) and is therefore highly non-Ohmic. Such features are usually associated with anomalous transport properties
    • …
    corecore