1,535 research outputs found

    On a low energy bound in a class of chiral field theories with solitons

    Get PDF
    A low energy bound in a class of chiral solitonic field theories related the infrared physics of the SU(N) Yang-Mills theory is established.Comment: Plain Latex, 8 pages, no figure

    Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi-Shabanov decomposition

    Get PDF
    The Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2) Yang-Mills field is employed for the calculation of the corresponding Wilsonian effective action to one-loop order with covariant gauge fixing. The generation of a mass scale is observed, and the flow of the marginal couplings is studied. Our results indicate that higher-derivative terms of the color-unit-vector n\mathbf{n} field are necessary for the description of topologically stable knotlike solitons which have been conjectured to be the large-distance degrees of freedom.Comment: 15 pages, no figures, v2: minor improvements, one reference added, version to appear in PR

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    Soliton solutions in an effective action for SU(2) Yang-Mills theory: including effects of higher-derivative term

    Full text link
    The Skyrme-Faddeev-Niemi (SFN) model which is an O(3) σ\sigma model in three dimensional space upto fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2) Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the thoery contains an additional fourth-order term which destabilizes the soliton solution. In this paper, we derive the second derivative term perturbatively and show that the SFN model with the second derivative term possesses soliton solutions.Comment: 7 pages, 3 figure

    Lagrangian and Hamiltonian Formalism on a Quantum Plane

    Full text link
    We examine the problem of defining Lagrangian and Hamiltonian mechanics for a particle moving on a quantum plane Qq,pQ_{q,p}. For Lagrangian mechanics, we first define a tangent quantum plane TQq,pTQ_{q,p} spanned by noncommuting particle coordinates and velocities. Using techniques similar to those of Wess and Zumino, we construct two different differential calculi on TQq,pTQ_{q,p}. These two differential calculi can in principle give rise to two different particle dynamics, starting from a single Lagrangian. For Hamiltonian mechanics, we define a phase space TQq,pT^*Q_{q,p} spanned by noncommuting particle coordinates and momenta. The commutation relations for the momenta can be determined only after knowing their functional dependence on coordinates and velocities. Thus these commutation relations, as well as the differential calculus on TQq,pT^*Q_{q,p}, depend on the initial choice of Lagrangian. We obtain the deformed Hamilton's equations of motion and the deformed Poisson brackets, and their definitions also depend on our initial choice of Lagrangian. We illustrate these ideas for two sample Lagrangians. The first system we examine corresponds to that of a nonrelativistic particle in a scalar potential. The other Lagrangian we consider is first order in time derivative

    Trends in the Improvement of Road Construction and Design

    Get PDF
    The development of economical cement-concrete road pavements, which possess high operational qualities and indicators of the modern technical level is an urgent task for road construction in the Republic of Belarus

    Dynamics in a noncommutative phase space

    Get PDF
    Dynamics has been generalized to a noncommutative phase space. The noncommuting phase space is taken to be invariant under the quantum group GLq,p(2)GL_{q,p}(2). The qq-deformed differential calculus on the phase space is formulated and using this, both the Hamiltonian and Lagrangian forms of dynamics have been constructed. In contrast to earlier forms of qq-dynamics, our formalism has the advantage of preserving the conventional symmetries such as rotational or Lorentz invariance.Comment: LaTeX-twice, 16 page
    corecore