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Abstract

The Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2) Yang-Mills field is
employed for the calculation of the corresponding Wilsonian effective action to one-
loop order with covariant gauge fixing. The generation of a mass scale is observed,
and the flow of the marginal couplings is studied. Our results indicate that higher-
derivative terms of the color-unit-vector n field are necessary for the description of
topologically stable knotlike solitons which have been conjectured to be the large-
distance degrees of freedom.

1 Introduction

The fact that quarks and gluons are not observed as asymptotic states in our world indicates
that a description in terms of these fields is not the most appropriate language for discussing
low-energy QCD. On the other hand, there seems to be little predictive virtue in describing
the low-energy domain only by observable quantities, such as mesons and baryons. A
purposive procedure can be the identification of those (not necessarily observable) degrees
of freedom of the system that allow for a “simple” description of the observable states. The
required “simplicity” can be measured in terms of the simplicity of the action that governs
those degrees of freedom. Clearly, a clever guess of such degrees of freedom is halfway to
the solution of the theory; the remaining problem is to prove that these degrees of freedom
truly arise from the fundamental theory by integrating out the high-energy modes.

For the pure Yang-Mills (YM) sector of QCD, such a guess has recently been made by
Faddeev and Niemi [1] inspired by the work of Cho [2]. For the gauge group SU(2), they
decomposed the (implicitly gauge-fixed) gauge potential Aµ into an “abelian” component
Cµ, a unit color vector n and a complex scalar field ϕ; here, Cµ is the local projection of Aµ
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onto some direction in color space defined by the space-dependent n. Faddeev and Niemi
conjectured that the important low-energy dynamics of SU(2) YM theory1 is determined
by the n field; its effective action of nonlinear sigma-model type, the Skyrme-Faddeev
model, should then arise from integrating out the further degrees of freedom: Cµ, ϕ, . . . :

ΓFN
eff =

∫
d4x

[
m2(∂µn)2 +

1

g2
(n · ∂µn× ∂νn)2

]
. (1)

The additional mass scale m is expected to be generated by the integration process as well;
first hints of this mechanism have been observed in a one-loop integration over a reduced
set of variables [5, 6]. The associated knotlike solitonic excitations of the Skyrme-Faddeev
model are supposed to be identified with glue balls (which are directly observable at least
on the lattice).2

The presence of gauge symmetry in YM theory complicates this ambitious conjecture
in two ways: first, in order to formulate a quantum theory, the decomposition of Aµ has
to also include the overabundant gauge degrees of freedom; and secondly, the gauge has
then to be fixed in a prescribed way, not only to be able to perform functional integration,
but also to arrive nevertheless at a unique n field.3

The first problem was solved by Shabanov [9, 10], who established a one-to-one corre-
spondence between the unfixed gauge field Aµ and its decomposition, and the quantum
theory was formulated; his results are briefly sketched in Sect. 2 and shall serve as the
starting point of our investigations. The second problem of gauge fixing implies that a
successful realization of the ideas of Faddeev and Niemi will only be meaningful in a cer-
tain gauge. In this (a priori unknown) gauge, the important low-energy degrees of freedom
might in fact be determined by the n field and a simple action, whereas in a different
gauge, these degrees of freedom may be hidden in a highly complicated structure involving
the n and other fields.

The present paper is dedicated to a calculation of the one-loop Wilsonian effective
action for SU(2) Yang-Mills theory in terms of the gauge field decomposition of Shabanov.
Our intention is to study the renormalization group flow of the mass scale parameter of
Eq. (1), the gauge coupling and further marginal couplings. In view of the second problem
mentioned above, our results and their interpretation are strictly tied to the particular
gauge we shall choose. We face this problem by fixing the gauge in such a way that
Lorentz invariance and global color transformations remain as residual symmetries; these
are the symmetries of the Skyrme-Faddeev model and must mandatorily be respected.

The Wilsonian effective action is characterized by the fact that it governs the dynamics
of the low-energy modes below a certain cutoff k; it incorporates the interactions that are
induced by high-energy fluctuations with momenta between k and the ultraviolet (UV)
cutoff Λ which have been integrated out. Following the Faddeev-Niemi conjecture, we only
retain the n field as low-energy degree of freedom. Actually, we integrate over the high-
energy modes in two different ways: first, we integrate out the k < p < Λ fluctuations of

1Different generalizations of the gauge field decomposition for higher gauge groups can be found in [3],
[4] and [9].

2In a very recent paper [7], Faddeev and Niemi generalized their decomposition in order to obtain a
manifest duality between the here-considered “magnetic” and additional “electric” variables, involving an
abelian scalar multiplet with two complex scalars. This electric sector will not be considered in the present
work.

3A different approach was put forward in [8], where the n field was identified by constructing an
unconstraint version of SU(2) Yang-Mills theory in a Hamiltonian context.
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all fields except for the n field, which is left untouched (Sec. 3). Secondly, we integrate all
fields including the n field over the same momentum shell (Sec. 4). In this way, we can
study the effect of the n field fluctuations on the flow of the mass scale and the couplings
in detail.

The results for both calculations are similar: the mass scale m appearing in Eq. (1) is
indeed generated by the renormalization group flow, and the gauge coupling is asymptoti-
cally free. As far as the simplicity of the conjectured effective action Eq. (1) is concerned,
our results are a bit disappointing: as discussed in Sec. 5, further marginal terms (not
displayed in Eq. (1)) are of the same order as the displayed one and therefore have to be
included in Eq. (1). Keeping only those terms that involve single derivatives acting on n
results in an action without stable solitons; nevertheless, stability is in fact ensured owing
to the presence of higher-derivative terms. The disadvantage is that these terms spoil the
desired simplicity of the low-energy effective theory.

Of course, our perturbative results represent only a first glance at the true infrared
behavior of the system and are far from providing qualitatively confirmed results, not to
mention quantitative predictions. To be precise, the one-loop calculation investigates only
the form of the renormalization group trajectories of the couplings in the vicinity of the
perturbative Gaussian fixed point. Nevertheless, various extrapolations of the perturba-
tive trajectories can elucidate the question as to whether the Faddeev-Niemi conjecture is
realizable or not.

2 Quantum Yang-Mills theory in Cho-Faddeev-Niemi-

Shabanov variables

In decomposing the Yang-Mills gauge connection, we follow [2, 9, 10]. Let Aµ be an SU(2)
connection where the color degrees of freedom are represented in vector notation. We
parametrize Aµ as

Aµ = nCµ + (∂µn)× n + Wµ, (2)

where the cross product is defined via the SU(2) structure constants. Cµ is an “abelian”
connection, whereas n denotes a unit vector in color space, n · n = 1. Wµ shall be
orthogonal to n in color space, obeying Wµ ·n = 0, so that Cµ = n ·Aµ. For a given n, Cµ

and Wµ, the connection Aµ is uniquely determined by Eq. (2). In the opposite direction,
there is still some arbitrariness: for a given Aµ, n can generally be chosen at will, but then
Cµ and Wµ are fixed (e.g., Wµ = n×Dµ(A)n, where Dµ denotes the covariant derivative).

While the LHS of Eq. (2) describes 3color × 4Lorentz = 12 off-shell and gauge-unfixed
degrees of freedom, the RHS up to now allows for (Cµ :)4Lorentz + (n :)2color + (Wµ :)3color×
4Lorentz− 4n·Wµ=0 = 14 degrees of freedom. Two degrees of freedom on the RHS remain to
be fixed. For example, by fixing n to point along a certain direction and imposing gauge
conditions on Wµ, we arrive at the class of abelian gauges which are known to induce
monopole degrees of freedom in Cµ. In order to avoid these topological defects, we let n
vary in spacetime and impose a general condition on Cµ,n and Wµ,

χ(n, Cµ,Wµ) = 0, with χ · n = 0, (3)

which fixes the redundant two degrees of freedom on the RHS of Eq. (2). Moreover,
Eq. (3) also determines how n, Cµ and Wµ transform under gauge transformations of Aµ:
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by demanding that δχ(n, Cµ(A),Wµ(A)) = 0 (and δ(χ · n) = 0), the transformation δn
of n is uniquely determined, from which δCµ and δWµ are also obtainable.

The thus established one-to-one correspondence between Aµ and its decomposition (2)
allows us to rewrite the generating functional of YM theory in terms of a functional integral
over the new fields [9, 10]:

Z =

∫
DnDCDW δ(χ) ∆S ∆FP e−SYM−Sgf . (4)

Beyond the usual Faddeev-Popov determinant ∆FP, the YM action SYM and the gauge
fixing action Sgf, we find one further determinant introduced by Shabanov, ∆S; this de-
terminant accompanies the δ functional which enforces the constraint χ = 0, in complete
analogy to the Faddeev-Popov procedure:

∆S := det

(
δχ

δn

∣∣∣∣
χ=0

)
. (5)

All objects in the integrand of Eq. (4) are understood to be functions of the 14 integration
variables n, Cµ and Wµ.

By construction, the generating functional (4) is invariant under different choices of
χ for the same reason that it is invariant under different choices of the gauge – this is
controlled by the Faddeev-Popov procedure.

Nevertheless, the choice of χ crucially belongs to the definition of the decomposition (2)
and of the conjectured low-energy degrees of freedom; in other words, even if there is one
particular χ that leads to Eq. (1) as the true low-energy effective action after integrating
out Cµ and Wµ, other choices of χ will not lead to the same result, because the low-energy
degrees of freedom then are differently distributed over n, Cµ and Wµ.

In the present work, χ is chosen in such a way that n transforms homogeneously under
gauge transformations, i.e., n is orthogonally rotated in color space [2]:

0 = χ := ∂µWµ + Cµn×Wµ + n(Wµ · ∂µn), (6)

⇒ δn = n× ϕ, under δAµ = Dµ(A)ϕ = ∂µϕ + Aµ × ϕ.

Incidentally, the gauge transformation properties of Cµ and Wµ also become very simple
with the choice (6): Wµ also transforms homogeneously, and δCµ = n · ∂µϕ.

Finally, the choice of the gauge-fixing condition must also be viewed as being part of the
definition of the decomposition. Not only does the functional form of ∆FP and Sgf depend
on this choice, but the discrimination of high- and low-momentum modes is also determined
by the gauge fixing. In fact, this gauge dependence of the mode momenta usually is the
main obstacle against setting up a Wilsonian renormalization group study. But in the
present context, it belongs to the conjecture that the particular gauge that we shall choose
singles out those low-momentum modes which finally provide for a simple description of
low-energy QCD; in a different gauge, we would encounter different low-momentum modes,
but we also would not expect to find the same simple description.

In this work, we choose the covariant gauge condition ∂µAµ = 0. This automatically
ensures covariance of the resulting effective action and, moreover, allows for the residual
symmetry of global gauge transformations, ϕ = const. Together with the choice (6), this
residual symmetry coincides with the desired global color symmetry of the Skyrme-Faddeev
model (1). This means that the demand for color and Lorentz symmetry of the action (1)
is satisfied exactly by a covariant gauge and condition (6).
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3 One-loop effective action without n fluctuations

Our aim is the construction of the one-loop Wilsonian effective action for the n field by
integrating out the C and W field over a momentum shell between the UV cutoff Λ and an
infrared cutoff k < Λ. In general, this will induce nonlinear and nonlocal self-interactions of
the n field; since we are looking for an action of the type (1), we represent these interactions
in a derivative expansion and neglect higher derivative terms of order O(∂2n∂2n) (later,
we shall question this approach).

Furthermore, we do not integrate out n field fluctuations in this section (see Sect. 4) and
disregard any induced C or W interactions below the infrared cutoff k. From a technical
viewpoint, the one-loop approximation of the desired effective action Γk[n] is obtained by
a Gaussian integration of the quadratic C and W terms in Eq. (4), neglecting higher-order
terms of the action:

e−Γ̂k[n] = e−Scl[n]

∫
k

DCDW ∆S[n] ∆FP[n]δ(χ) (7)

×e
− 1

g2

∫ {Cµ
1
2
MC

µνCν+Wµ
1
2
MW

µν Wν+CµQC
µν ·Wν+CνKC

ν +Wµ·KW
µ },

where the hat on Γ̂k[n] indicates that the n field fluctuations have not been taken into
account. Furthermore, any C or W dependence of ∆S and ∆FP has been neglected to
one-loop order; the various differential operators and currents which all depend on n (and
the gauge parameter α) are defined in Appendix A. The classical action of n including
gauge fixing terms is given by:

Scl[n] :=

∫
d4x

(
1

4g2
(∂µn× ∂νn)2 +

1

2αg2
(∂2n× n)2

)
. (8)

We treat the δ functional in Eq. (7) in its Fourier representation,

δ(χ) →
∫
Dφ e−i

∫
φ·∂µWµ+φ·Cµn×Wµ+(φ·n)(∂µn·Wµ), (9)

where the second term in the exponent, the triple vertex, can actually be neglected, because
it leads only to nonlocal terms (cf. later) or terms of higher order in derivatives. Inserting
Eq. (9) into Eq. (7), we end up with three functional integrals over C, W and φ, which
can successively be performed, leading to three determinants,

e−Γ̂k[n] → e−Scl[n]∆S[n] ∆FP[n]
(
det MC

)−1/2 (
det M

W)−1/2 (
det−Q̃φ

µ (M
W

)−1
µν Qφ

ν

)−1/2
,

(10)

where we have omitted several nonlocal terms that arise from the completion of the square
in the exponent during the Gaussian integration. In Appendix B, we argue that these
nonlocal terms are unimportant in the present Wilsonian investigation. Again, details
about the various operators in Eq. (10) are given in App. A.

The determinants are functionals of n only and have to be evaluated over the space
of test functions with momenta between k and Λ. The determinants depend also on the
gauge parameter α. Only for the Landau gauge α = 0 is the gauge-fixing δ functional
implemented exactly; in fact, α = 0 appears to be a fixed point of the renormalization
group flow [11]. But this in turn ensures that the choice of α = α(k) ≡ αk at the cutoff
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scale k → Λ is to some extent arbitrary, since αk flows to zero anyway as k is lowered. This
allows us to conveniently choose αk=Λ = 1 at the cutoff scale and evaluate the determinants
with this parameter choice.

As mentioned above, we evaluate the determinants in a derivative expansion based
on the assumption that the low-order derivatives of n represent the essential degrees of
freedom in the low-energy domain. There are various techniques for the calculation at our
disposal; it turns out that a direct momentum expansion of the operators is most efficient.4

We shall demonstrate this method by means of the third determinant of Eq. (10), the “C
determinant”; the key observation is that derivatives acting on the space of test functions
create momenta of the order of p with k < p < Λ, whereas derivatives of the n field are
assumed to obey |∂n| � k in agreement with the Faddeev-Niemi conjecture. This suggests
an expansion of the form

ln
(
det MC

)1/2
= −1

2
Tr ln

(−∂2
1L + ∂n · ∂n

)
= −1

2
Tr

[
ln(−∂2

1L) + ln

(
1L +

∂n · ∂n

−∂2

)]
(11)

= −1

2
Tr ln(−∂2

1L)− 1

2
Tr

∂n · ∂n

−∂2
+

1

4
Tr

(
∂n · ∂n

−∂2

)2

+O((∂n)6),

where we suppressed Lorentz (L) indices. Here, we neglected higher-derivative terms of n,
e.g., ∂2n, which is in the spirit of the Faddeev-Niemi conjecture; of course, this has to be
checked later on. Employing the integral formulas given in App. C, we finally obtain for
the C determinant

ln
(
det MC

)1/2 ' − 1

32π2
(Λ2 − k2)

∫
x

(∂µn)2

− 1

32π2
ln

Λ

k

∫
x

(
∂µn× ∂νn

)2
+

1

32π2
ln

Λ

k

∫
x

(∂µn)4, (12)

where
∫

x
≡ ∫ d4x. The first term contributes to the desired mass term of Eq. (1), whereas

the second and third renormalize the classical action (8).
The remaining four determinants of Eq. (10) have to be evaluated in the same way. The

calculation is straightforward though extensive. Here, we shall cite only the final results:

ln ∆FP = −(Λ2−k2)

64π2

∫
x

(∂µn)2 +
1

48π2
ln

Λ

k

∫
x

(
∂µn×∂νn

)2 − 1

32π2
ln

Λ

k

∫
x

(∂µn)4,

ln(det M
W

)−1/2 = −5(Λ2−k2)

64π2

∫
x

(∂µn)2− 5

24π2
ln

Λ

k

∫
x

(
∂µn×∂νn

)2
+

35

128π2
ln

Λ

k

∫
x

(∂µn)4,

ln(det−Q̃φM
W−1

Qφ)−1/2 =
3(Λ2−k2)

128π2

∫
x

(∂µn)2+
49

192π2
ln

Λ

k

∫
x

(
∂µn×∂νn

)2
− 5

16π2
ln

Λ

k

∫
x

(∂µn)4. (13)

The determinant ∆S does not contribute, because it is independent of n in one-loop ap-
proximation. Inserting these results into Eq. (10) leads us to the desired Wilsonian effective

4As cross-checks, we also employed a propertime representation for the operators which we decomposed
with a heat-kernel expansion as well as with a multiple use of the Baker-Campbell-Hausdorff formula.

6



action to one-loop order for the n field in a derivative expansion:

Γ̂k[n] =
13

8

Λ2

16π2

(
1− e2t

) ∫
x

(∂µn)2 +
1

4

(
1

g2
+

7

3

1

16π2
t

)∫
x

(∂µn× ∂νn)2

−1

2

(
1

αg2
+

5

4

1

16π2
t

)∫
x

(∂µn)4, (14)

where t = ln k/Λ ∈] −∞, 0] denotes the “renormalization group time”. We would like to
stress once more that Γ̂k[n] does not contain the result of fluctuations of the n field itself;
in other words, it represents (an approximation to) the “tree-level action” for the complete
quantum theory of the n field.

Indeed, the generation of a “kinetic” term∼ (∂µn)2 growing under the flow of increasing
k as conjectured by Faddeev and Niemi is observed. Moreover, it has the correct sign (+),
implying that an “effective field theory” interpretation seems possible. The second term
which is proportional to the classical action reveals information about the renormalization
of the Yang-Mills coupling:

1

ĝ2
R

:=
1

g2
+

7

3

1

16π2
t ⇒ β̂g2 := ∂tĝ

2
R = −7

3

1

16π2
ĝ4
R. (15)

The resulting β̂ function is a factor of 44/7 smaller than the β function of full Yang-
Mills theory for SU(2). This is an expected result, since we did not integrate over all
degrees of freedom of the gauge field; the n integration still remains. Nevertheless, the
β̂ function implies asymptotic freedom, which indicates that the decomposition of the
Yang-Mills field is not a pathologically absurd choice. It is interesting to observe that
the C and W determinants contribute positively to β̂g2, whereas the Faddeev-Popov and
the φ determinant contribute negatively; the latter, which arises from the W fixing, even
dominates: −7/3 = [6C − 4FP + 40W − 49φ]/3.

The third term of Eq. (14) contains information about the renormalization of the gauge
parameter α under the flow:

1

α̂Rĝ2
R

=
1

αg2
+

5

4

1

16π2
t, ⇒ ∂tα̂R =

7

3
α̂R

(
1− 15

28
α̂R

)
ĝ2
R

16π2
. (16)

The RHS of this renormalization group equation is positive for α < 28/15 ' 1.87; this
implies that α runs to zero under the flow as long as αΛ < 28/15. Therefore, our starting
point αΛ = 1 is a consistent choice that ensures a running into the desired Landau gauge
α → 0.

Before we discuss the physical implications of our result Eq. (14), let us study the effec-
tive action including the n field fluctuations. In principle, this action should be obtainable
from the present result by inserting Γ̂k[n] into a functional integral over n. However, we
evaluated Γ̂k[n] in a derivative expansion, neglecting high-momentum fluctuations of the
n field. But when integrating over n fluctuations, especially these high-momentum modes
are important for the renormalization of the couplings. Hence, their correct running can-
not be calculated via such an indirect approach. The direct way is presented in the next
section.
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4 One-loop effective action including n fluctuations

In the following, we propose a different way to integrate out the “hard” modes with high
momenta p, k < p < Λ. This time, we also include the hard fluctuations of the n field and
decompose the complete Yang-Mills field into soft and hard modes,

Aµ = AS
µ + AH

µ , AS,H
µ = AS,H

µ (CS,H
µ ,nS,H,WS,H

µ ). (17)

Since the hard modes AH
µ shall be integrated out completely, the explicit use of the de-

composition into CH
µ , nH and WH

µ would be a very inconvenient choice of overabundant
integration variables; therefore, the decomposition is only adopted for the soft modes AS

µ.
In the spirit of the Faddeev-Niemi conjecture, we assume that these soft modes are domi-
nated by the n field:

AS
µ = ∂µn

S × nS. (18)

Integrating out the hard modes AH results in two determinants in one-loop approximation,

Γk[A
S] =

1

2
ln det(∆YM[AS])−1 − ln det ∆FP[AS], (19)

corresponding to the hard gluon and ghost loops; again we dropped the nonlocal terms
(cf. App. B). The ghost contribution in the form of the Faddeev-Popov determinant is, of
course, identical to the one obtained in the first line of Eq. (13), since the gauge fixing is
performed in the same way as before. The gluonic determinant involves the operator

(∆YM[AS])−1
µν = −

[
D2

1L − 2iF −DD +
1

α
∂∂

]
µν

∣∣∣∣
A=AS

, (20)

where Dµ denotes the covariant derivative and Fµν the field strength tensor. The explicit
representation of Eq. (20) in terms of the n field is again given in App. A, Eqs. (A.6)
and (A.7). The determinants in Eq. (19) can be calculated in a derivative expansion in
the same way as described in the preceding section. Since the computation of the term
∼ (∂n)2 is already very laborious, we do not calculate the marginal terms ∼ (∂µn× ∂νn)2

etc. directly, but take over the known one-loop results for the running coupling and the
gauge parameter from [11]. The final result for the Wilsonian one-loop effective action for
the soft modes of the n field reads

Γk[n] =
Λ2

16π2

(
1− e2t

) ∫
x

(∂µn)2 +
1

4

(
1

g2
+

44

3

1

16π2
t

)∫
x

(∂µn× ∂νn)2 (21)

−1

2

(
1

αg2
+

14

3

1

16π2
t

)∫
x

(∂µn)4 +
1

2

(
1

αg2
+

14

3

1

16π2
t

)∫
x

(∂2n · ∂2n),

where we dropped the superscript S. Furthermore, we included for later use a higher-
derivative term ∼ ∂2n · ∂2n which is also marginal in the renormalization group sense and
accompanied by the 1/(αg2) coefficient in the classical action.

Again, the generation of the “kinetic” term ∼ (∂n)2 with a mass scale is observed; it
is smaller by a factor of 8/13 than in the preceding section. This means that the hard
n field fluctuations that have been taken into account in Eq. (21) reduce the new mass
scale slightly; on the other hand, they increase the running of the Yang-Mills coupling
by contributing the missing piece to the β function which now obtains the correct SU(2)
value, βg2 = 44

3
1

16π2 g
4
R. The running of the gauge parameter α is also increased, but no

qualitative changes compared to Eq. (14) can be observed.
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5 Discussion and Conclusions

The main results of our paper are contained in Eqs. (14) and (21), where the Wilsonian one-
loop effective actions Γ̂k and Γk for the n field have been given without and including hard
n field fluctuations, respectively. We were able to demonstrate that a “kinetic” term with
a new mass scale for the n field is indeed generated perturbatively, as was conjectured
by Faddeev and Niemi. This term is relevant in the renormalization group sense and
perturbatively exhibits a quadratic dependence on the UV cutoff Λ.

Furthermore, we studied the renormalization group flow of the marginal couplings of
the n field self-interactions given by the Yang-Mills coupling and the gauge parameter.
These terms are responsible for the stabilization of possible topological excitations of the
n field, as suggested by the Skyrme-Faddeev model. In total, the difference between Γ̂k

and Γk is only of quantitative nature: the inclusion of hard n field fluctuations increases
the running of the marginal couplings and reduces the new mass scale; qualitative features
such as stability of possible solitons remain untouched.

In fact, the question of stability turns out to be delicate: truncating our results for Γ̂k or
Γk in Eqs. (14) or (21) at the level of the original Faddeev-Niemi proposal Eq. (1) (the first
lines of Eqs. (14) and (21), respectively), we find an action that allows for stable knotlike
solitons, since the coefficients of both terms are positive (as long as we stay away from the
Landau pole, which we consider as unphysical). Taking additionally the (∂n)4 term of Γ̂k

or Γk into account, which is also marginal and does not contain second-order derivatives
on n, stability is lost, since the coupling coefficient is negative in Eqs. (14) and (21); for
stable solitons, a strictly positive coefficient would be required for this truncation, as was
shown in [12].

Finally dropping the demand for first-order derivatives, we can include one further
marginal term ∼ ∂2n · ∂2n as given in Eq. (21) for Γk. With the aid of the identity∫

x

(∂2n× n)2 =

∫
x

[∂2n · ∂2n− (∂µn)4], (22)

we find that the second line of Eq. (21) represents a strictly positive contribution to the
action which again stabilizes possible solitons.5

Of course, this game could be continued by including further destabilizing and stabiliz-
ing higher-order terms again and again, but such terms are irrelevant in a renormalization
group sense; that means their corresponding couplings are accompanied by inverse powers
of the UV cutoff Λ and are thereby expected to vanish in the limit of large cutoff.

To summarize, our perturbative renormalization group analysis suggests enlarging the
Faddeev-Niemi proposal for the effective low-energy action of Yang-Mills theory by taking
all marginal operators of a derivative expansion into account. The original proposal of
Eq. (1) was inspired by a desired Hamiltonian interpretation of the action that demands
the absence of third- or higher-order time derivatives. But, as demonstrated, the covariant
renormalization group does not care about a Hamiltonian interpretation of the final result.
In some sense, the desired “simplicity” of the final result is spoiled by the presence of higher-
derivative terms; moreover, it remains questionable as to whether the importance of the
∂2n ·∂2n term is still consistent with the derivative expansion of the action. Unfortunately,
this cannot be checked within the present approach.

5We expect a similar behavior for the action Γ̂k in Eq. (14), although we have not calculated the
coefficient of the ∂2n · ∂2n term explicitly.
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It should be stressed once again that the perturbative investigation performed here
hardly suffices to confirm results about the infrared domain of Yang-Mills theories. On the
contrary, it is only a valid approximation in the vicinity of the Gaussian UV fixed point of
the theory. Nevertheless, our study might lend some intuition to possible nonperturbative
scenarios: for example, let us assume that the Landau gauge α = 0 indeed is an infrared
fixed point in covariant gauges. Then the stabilizing term ∼ (∂2n×n)2 is enhanced in the
infrared, provided that the increase of the running coupling g obeys αg2 → 0 for k → 0;
this would be realized, e.g., if g approached an infrared fixed point. Such a scenario thus
supports the idea of topological knotlike solitons as important infrared degrees of freedom
of Yang-Mills theories.

Perhaps the main drawback of our study lies in the fact that the new mass scale is not
renormalization-group invariant; for example, we can read off from Eq. (21) that

m2
k =

1

16π2
Λ2(1− e2t), t ≡ ln

k

Λ
≤ 0. (23)

The new mass scale mk is necessarily proportional to Λ, because there simply is no other
scale in our system. But contrary to the gauge coupling or the gauge parameter, which
can be made independent of Λ by adjusting the bare parameters, the Λ dependence of mk

persists, since there is no bare mass parameter to adjust. One may speculate that this
problem is solved by “renormalization group improvement” of the kind

Λ2 → Λ2 e
− 3·16π2

22g2(Λ) , (24)

which upon insertion into Eq. (23) leads to a Λ-independent mass scale for k → 0. Obvi-
ously, our perturbative calculation can never produce the RHS of Eq. (24), but a nonper-
turbative study of the renormalization group flow should result in such a structure (in a
different context, such a mechanism has been observed in [13]).

Employing the measured values of the strong coupling constant at various renormaliza-
tion points, we can determine the order of magnitude of the new mass scale: m ≡ mk→0 =
O(1)MeV, e.g., m ' 5.74MeV for αs(MZ) = 0.12 or m ' 0.68MeV for αs(10GeV) = 0.18
(the difference between these numbers arises from the fact that the initial values for the
coupling are not related by a pure one-loop running). Of physical interest are the masses
of the solitonic excitation in this effective theory. Unfortunately, there are no numerical
results available for theories with higher-derivative order, so that we have to resort to re-
sults for an action identical to the first line of Eq. (21). For this model, the mass of the
lowest lying states are approximately given by M ' O(103)

√
q m, where q denotes the

value of the coefficient in front of the (∂µn× ∂νn)2 term [12, 14]. For couplings of order 1,
we end up with soliton masses of the order of M ∼ O(1)GeV; this is in accordance with
lattice results for glue ball masses: e.g., MGB ' 1.5GeV for the lowest lying state in SU(2)
[15]. Of course, this rough and speculative estimate should not be viewed as a “serious
prediction” of our work.

With all these reservations in mind, the Faddeev-Niemi conjecture about possible low-
energy degrees of freedom of Yang-Mills theories provides an interesting working hypothesis
which deserves further exploration.
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Appendix

A Differential operators, tensors, currents, etc.

This appendix represents a collection of differential operators and other tensorial quantities
which are required in the main text.

The Faddeev-Popov determinant ∆FP in Eq. (7) and (10) for covariant gauges involves
the operator (in one-loop approximation)

−∂µDµ(A)
∣∣
C=0=W

= −∂2
1c + (∂2n⊗ n− n⊗ ∂2n) + (∂µn⊗ n− n⊗ ∂µn)∂µ, (A.1)

so that ∆FP = det
(−∂µDµ(A)

∣∣
C=0=W

)
.

The objects occurring in the exponent of Eq. (7) are defined as follows:

MC
µν := −∂2δµν + ∂µ∂ν − 1

α
∂µ∂ν +

1

α
∂µn · ∂νn

MW
µν := −∂2δµν1c + ∂µ∂ν1c − 1

α
∂µ∂ν1c − ∂µn⊗ ∂νn + ∂νn⊗ ∂µn

QC
µν :=

1

α

(
∂µn∂ν + ∂νn∂µ + ∂µ∂νn

)
KC

µ := ∂ν(n · ∂νn× ∂µn) +
1

α
∂µn · ∂2n× n

KW
µ :=

1

α
∂µ(n× ∂2n). (A.2)

The determinants in Eq. (10) employ several composites of these operators. Since we first
perform the C integration, the resulting determinant involves only MC , whereas the W
determinant also receives contributions from the mixing term QC ,

M
W

µν = MW
µν + Q̃C

µκ(M
C)−1

κλQC
λν . (A.3)

Here, Q̃ is defined via partial integration∫
(QC

µνWν)fν
i.b.p
=

∫
WµQ̃

C
µνfν , (A.4)

and fν denotes an arbitrary test function.
The last determinant in Eq. (10) arises from the φ integration and receives contributions

from the relevant parts of the exponent of Eq. (9), which we denote by

Qφ
µ := i

(−∂µ1c + ∂µn⊗ n
)
, (A.5)
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so that δ(χ) → ∫ Dφ exp(− ∫ Wµ ·Qφ
µφ) to one-loop order. Employing a notation similar

to Eq. (A.4), the differential operator accompanying the term ∼ φφ in the exponent finally

reads Q̃φ
µ (M

W

µν )−1Qφ
ν . Integrating the φ field along the imaginary axis leads to the last

determinant in Eq. (10).
In Sect. 4, we employ the inverse gluon propagator (∆YM[AS])−1 coupled to all orders

to the soft n field fluctuations. For an explicit representation, we need the covariant
derivative,

Dµ[n] = ∂µ1c + n⊗ ∂µn− ∂µn⊗ n, (A.6)

where we have inserted the soft gauge potential Eq. (18) into the covariant derivative. The
inverse gluon propagator Eq. (20) then reads

(∆YM[n])−1
µν = 1cδµν − 2(n⊗ ∂λn− ∂µn⊗ n)∂λδµν + (n⊗ ∂νn− ∂νn⊗ n)∂µ

+(n⊗ ∂µn− ∂µn⊗ n)∂ν − (n⊗ ∂2n− ∂2n⊗ n)δµν + (∂λn)2n⊗ nδµν

+∂λn⊗ ∂λnδµν − (2∂µn⊗ ∂νn− ∂νn⊗ ∂µn)

+(n⊗ ∂µνn− ∂µνn⊗ n)− (∂µn · ∂νn)n⊗ n. (A.7)

B Nonlocal terms

During the Gaussian integration over the C, φ and W fields in Sect. 3, several nonlocal
terms arise from the completion of the square in the exponent. Here, we shall give reasons
why they can be neglected. Let us exemplarily consider the simplest nonlocal contribution
arising from the C integration:

KC(MC)−1KC = (n · ∂λn× ∂λµn)

(
1

−∂2 + ∂n · ∂n

)
µν

(n · ∂κn× ∂κνn). (B.8)

Within the calculation of the determinants, we expanded the inverse operator assuming
that ∂n ·∂n � −∂2. This was justified, since the derivative operator acts on the test func-
tion space with momenta p between k and Λ, which are large compared to the conjectured
slow variation of the n field.

In the present case, the situation is different, because the derivative term −∂2 acts only
on the n field and its derivatives to the right (there is no test function to act on). In other
words, the nonlocal terms are only numbers, not operators. The derivatives can thus be
approximated by the (inverse) scale of variation of the n field or its derivatives which is
much smaller than k or Λ. This implies that the nonlocal terms do not depend on k or Λ,
so that they cannot contribute to the flow of the couplings.

For example, a reasonable lowest-order approximation of the RHS of Eq. (B.8) is given
by its local limit,

KC(MC)−1KC = (n · ∂λn× ∂λµn)

(
1

∂n · ∂n

)
µν

(n · ∂κn× ∂κνn) + . . . , (B.9)

where it is obvious that these terms do not contribute to the desired Wilsonian effective
action. The same line of argument holds for all nonlocal terms appearing in Sects. 3 and
4.
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C Momentum integrals

Several standard integrals appear in the integration over the momentum shell [k, Λ] in
Sect. 3. One basic formula is given by∫

[k,Λ]

d4p

(2π)4

pλpκpµpν

p8
=

1

3

1

64π2
ln

Λ

k

(
δλκδµν + δλµδκν + δλνδκµ

)
. (C.10)

From this formula, we can also deduce upon index contraction that∫
[k,Λ]

d4p

(2π)4

pµpν

p6
=

1

32π2
ln

Λ

k
,

∫
[k,Λ]

d4p

(2π)4

1

p4
=

1

8π2
ln

Λ

k
. (C.11)

The last integral is, of course, standard and can be used to prove Eq. (C.10) in addition
to symmetry arguments. The same philosophy applies to the second type of integrals:∫

[k,Λ]

d4p

(2π)4

pµpν

p4
=

1

64π2
(Λ2 − k2) δµν ,

∫
[k,Λ]

d4p

(2π)4

1

p2
=

1

16π2
(Λ2 − k2). (C.12)
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