8 research outputs found

    New flow cytometry-based method for the assessment of the antibacterial effect of immune cells and subcellular particles

    Get PDF
    Techniques currently used for assessment of bacterial count or growth are time-consuming, offer low throughput, or they are complicated or expensive. The aim of the present work was to elaborate a new method that is able to detect the antibacterial effect of cells, subcellular particles, and soluble compounds in a fast, cost, and labor effective way. Our proposed technique is based on flow cytometry (FC) optimized for detection of small particles and on fluorescently labeled bacteria. It allows direct determination of the bacterial count in 3 hours. The effect of various human phagocytes and extracellular vesicles on gram-positive and gram-negative bacteria is investigated in parallel with the new, FC-based method, with colony counting and with our previous, OD-based method. Comparing the killing effect of wild type and NADPH oxidase-deficient murine neutrophils presents an example of detection of a clinically important deficiency. Strong correlation was obtained between the results of the different techniques, but the reproducibility of the FC-based test was superior to the OD-based test. The major advantages of the new technique are: rapidity, low cost, high throughput, and simplicity. ©2018 Society for Leukocyte Biology

    Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes.

    Get PDF
    AIM: To carry out a systematic study on the effect of different storage conditions on the number as well as the physical and functional properties of antibacterial extracellular vesicles (EVs) derived from human neutrophilic granulocytes. METHODS: Production of EVs with antibacterial properties was initiated by opsonized Zymosan A particles. The number of released fluorescent EVs was determined by flow cytometry following careful calibration. Physical properties and size of EVs were investigated by flow cytometry, dynamic light scattering and electron microscopy. Functional properties of EVs were tested by bacterial survival assay. RESULTS: Storage at +20 degrees C or +4 degrees C resulted in a significant decrease of EV number and antibacterial effect after 1 day. Storage at -20 degrees C did not influence the EV number up to 28 days, but induced a shift in EV size and almost complete loss of antibacterial function by 28 days. Storage at -80 degrees C had no significant effect either on EV number or size and allowed partial preservation of the antibacterial function up to 28 days. Snap-freezing did not improve the results, whereas the widely used cryoprotectants induced EV lysis. CONCLUSION: Storage significantly alters both the physical and functional properties of EVs even if the number of EVs stays constant. If storage is needed, EVs should be kept at -80 degrees C, preferably not longer than 7 days. For functional tests, freshly prepared EVs are recommended

    Functionally and morphologically distinct populations of extracellular vesicles produced by human neutrophilic granulocytes.

    Get PDF
    EVs in the microvesicle size range released during spontaneous death of human neutrophils were characterized and their properties compared with previously described EVs with antibacterial effect (aEVs, generated on specific activation) or produced spontaneously (sEVs). The 3 vesicle populations overlapped in size and in part of the constituent proteins were stained with annexin V and were impermeable to PI. However, none of them produced superoxide. In contrast, remarkable differences were observed in the morphology, abundance of proteins, and antibacterial function. EVs formed spontaneously in 30 min (sEVs) were more similar to EVs released during spontaneous death in 1-3 days than to EVs formed in 30 min on stimulation of opsonin receptors (aEVs). Spontaneously generated EVs had no antibacterial effect despite their large number and protein content. We hypothesized 2 parallel mechanisms: one that proceeds spontaneously and produces EVs without antibacterial effect and another process that is triggered by opsonin receptors and results in differential sorting of proteins into EVs with antibacterial capacity. Our results call attention to the functional and morphologic heterogeneity within the microvesicle/ectosome fraction of EVs

    Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions

    Get PDF
    Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are "custom made," acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis
    corecore