204 research outputs found

    Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    No full text
    International audienceMeasurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4?) but moderate solar flux level (F10.7=124). Our analysis reveals clear wind features in the summer (Northern) Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern) Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00?18:00 MLT). In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution

    Interhemispheric comparison of average substorm onset locations: evidence for deviation from conjugacy

    Get PDF
    Based on 2760 well-defined substorm onsets in the Northern Hemisphere and 1432 in the Southern Hemisphere observed by the FUV Imager on board the IMAGE spacecraft, a detailed statistical study is performed including both auroral regions. This study focuses on the hemispheric comparisons. Southward pointing interplanetary magnetic field (IMF) is favorable for substorm to occur, but still 30% of the events are preceded by northward IMF. The magnetic latitude (MLat) of substorm onset depends mainly on the merging electric field (<I>E</sub>m</sub></I>) with a relationship of |dMLat|= −5.2 <I>E<sub>m</sub></I><sup>0.5</sup>, where dMLat is the deviation from onset MLat. In addition, seasonal effects on onset MLat are also detected, with about 2 degrees higher latitudes during solstices than equinoxes. Both IMF <I>B<sub>y</sub></I> and solar illumination have a significant influence on the magnetic local time (MLT) of onsets. An average relation, dMLT=0.25 <I>B<sub>y</sub></I> between IMF <I>B<sub>y</sub></I> and the deviation from onset MLT, was found. The <I>B<sub>y</sub></I> dependence varies slightly with the onset latitude. At lower latitudes (higher activity) it is reduced. After removal of the relationship with IMF <I>B<sub>y</sub></I> a linear relationships remains between the solar zenith angle and onset MLT with dMLT=1 min/deg. Therefore, both solar illumination and IMF <I>B<sub>y</sub></I> can contribute to hemispheric longitudinal displacements of substorm onset locations from conjugacy. No indications for systematic latitudinal displacements between the hemispheres have been found

    Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    No full text
    International audienceThis study concentrates on the characteristics of field-aligned currents (FACs) in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer) than in the Northern (winter) Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1) the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2) The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3) The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude

    Storm-time related mass density anomalies in the polar cap as observed by CHAMP

    Get PDF

    Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity

    Get PDF
    Based on the multi-year data base (2001–2009) of CHAMP Planar Langmuir Probe (PLP) data and GRACE K-Band Ranging (KBR1B) data, typical features of ionospheric plasma irregularities are studied at the altitudes of CHAMP (300–400 km) and GRACE (~500 km). The phenomena we are focusing on are the equatorial plasma bubbles (EPBs). Similar seasonal/longitudinal (S/L) distributions of EPB have been found at both CHAMP and GRACE altitudes during solar active and quiet years. Peak EPB occurrence rates, defined as number of events within an S/L bin divided by the number of passes over that bin, decrease from the high and moderate solar flux period (2001–2005) to the low solar flux period (2005–2009) from 80% to 60% and 60% to 40% at CHAMP and GRACE altitudes, respectively. On average the occurrence rate increases linearly with solar flux at about the same rate at CHAMP and GRACE. For high flux levels (P10.7>200) non-linear increases are observed at GRACE. The occurrence rate increases rapidly after 19:00 local time (LT) during high solar flux periods. Around solar minimum rates increase more gently and peak around 22:00 LT. The highest occurrence rates are encountered at latitudes around 10° north and south of the dip equator. Results from the two altitudes support the notion that EPBs form regions of depleted plasma along geomagnetic fluxtubes. It is shown for the first time that in regions of high occurrence rates EPBs are associated with fluxtubes reaching greater apex heights than those in regions of low rates

    An empirical model of the thermospheric mass density derived from CHAMP satellite

    Get PDF
    In this study, we present an empirical model, named CH-Therm-2018, of the thermospheric mass density derived from 9-year (from August 2000 to July 2009) accelerometer measurements from the CHAllenging Mini-satellite Payload (CHAMP) satellite at altitudes from 460 to 310&thinsp;km. The CHAMP dataset is divided into two 5-year periods with 1-year overlap (from August 2000 to July 2005 and from August 2004 to July 2009) to represent the high-to-moderate and moderate-to-low solar activity conditions, respectively. The CH-Therm-2018 model describes the thermospheric density as a function of seven key parameters, namely the height, solar flux index, season (day of year), magnetic local time, geographic latitude and longitude, as well as magnetic activity represented by the solar wind merging electric field. Predictions of the CH-Therm-2018 model agree well with CHAMP observations (within 20&thinsp;%) and show different features of thermospheric mass density during the two solar activity levels, e.g., the March–September equinox asymmetry and the longitudinal wave pattern. From the analysis of satellite laser ranging (SLR) observations of the ANDE-Pollux satellite during August–September 2009, we estimate 6&thinsp;h scaling factors of the thermospheric mass density provided by our model and obtain the median value equal to 1.267±0.60. Subsequently, we scale up our CH-Therm-2018 mass density predictions by a scale factor of 1.267. We further compare the CH-Therm-2018 predictions with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended (NRLMSISE-00) model. The result shows that our model better predicts the density evolution during the last solar minimum (2008–2009) than the NRLMSISE-00 model.</p
    • …
    corecore