279 research outputs found

    Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries

    Get PDF
    A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years

    Zigzag Charge Ordering in alpha'-NaV2O5

    Full text link
    23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline sample are reported. In the charge-ordered phase, the number of inequivalent Na sites observed is more than that expected from the low-temperature structures of space group Fmm2 reported so far. This disagreement indicates that the real structure including both atomic displacement and charge disproportionation is of lower symmetry. It is suggested that zigzag ordering is the most probable. The temperature variation of the NMR spectra near the transition temperature is incompatible with that of second-order transitions. It is thus concluded that the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp

    Superexchange in the quarter- filled two- leg ladder system NaV2O5

    Full text link
    A theory of superexchange in the mixed valent layer compound NaV2O5 is presented which provides a consistent description of exchange both in the disordered and charge ordered state. Starting from results of band structure calculations for NaV2O5 first an underlying electronic model for a ladder unit in the Trellis lattice is formulated. By using the molecular orbital representation for intra-rung electronic states a second-order perturbation procedure is developed and an effective spin-chain model for a ladder is derived. Variation of the resulting superexchange integral J is examined numerically as the ladder system evolves from a charge disordered to the extreme ('zig-zag') charge ordered state. It is found that the effective intra- ladder superexchange is always antiferromagnetic.Comment: 18 pages Revtex, 7 Postscript figure

    Exact diagonalisation study of charge order in the quarter-filled two-leg ladder system NaV2O5

    Full text link
    The charge ordering transition in the layer compound NaV2O5 is studied by means of exact diagonalization methods for finite systems. The 2-leg ladders of the V-Trellis lattice are associated with one spin variable of the vanadium 3d-electron in the rung and a pseudospin variable that describes its positional degree of freedom. The charge ordering (CO) due to intersite Coulomb interactions is described by an effective Ising-like Hamiltonian for the pseudo-spins that are coupled to the spin fluctuations along the ladder. We employ a Lanczos algortihm on 2D lattice to compute charge (pseudo-spin) and spin-correlation functions and the energies of the low lying excited states. A CO-phase diagram is constructed and the effect of intra-ladder exchange on the CO transition is studied. It is shown that a phase with no-longe range order (no-LRO) exists between the in-line and zig-zag ordered structures. We provide a finite-size scaling analysis for the spin excitation gap and also discuss the type of excitations. In addition we studied the effect of bond-alternation of spin exchange and derived a scaling form for the spin gap in terms of the dimerization parameter.Comment: 9 pages with 9 EPS figures and 1 table, To be appeared in Phys. Rev. B (2001

    Low-Temperature Structure of the Quarter-Filled Ladder Compound alpha'-NaV2O5

    Full text link
    The low-temperature (LT) superstructure of α\alpha'-NaV2_2O5_5 was determined by synchrotron radiation x-ray diffraction. Below the phase transition temperature associated with atomic displacement and charge ordering at 34K, we observed the Bragg peak splittings, which evidence that the LT structure is monoclinic. It was determined that the LT structure is (ab)×2b×4c(a-b)\times 2b \times 4c with the space group A112A112 where a,ba, b and cc represent the high temperature orthorhombic unit cell. The valence estimation of V ions according to the bond valence sum method shows that the V sites are clearly separated into two groups of V4+^{4+} and V5+^{5+} with a zigzagzigzag charge ordering pattern. This LT structure is consistent with resonant x-ray and NMR measurements, and strikingly contrasts to the LT structure previously reported, which includes V4.5+^{4.5+} sites.Comment: 4 pages, 3 figures, 1 tabl

    Discussion of a spin-cluster model for the low temperature phase of NaV_2O_5

    Full text link
    We discuss magnetic excitations of a spin-cluster model which has been suggested to describe the low temperature phase of alpha'-NaV_2O_5. This model fulfills all symmetry criteria proposed by recent x-ray investigations. We find that this model is not able to describe the occurence of two well separated magnon lines perpendicular to the ladder direction as observed in INS experiments. We suggest further experimental analysis to generally distinguish between models with double reflection or inversion symmetry.Comment: 4 pages, 4 figures, added a calculation of level repulsio

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    High frequency ESR investigation on dynamical charge disproportionation and spin gap excitation in NaV_2O_5

    Full text link
    A significant frequency dependence of the ESR line width is found in NaV_2O_5 between 34-100 K and the line width increases as the resonance frequency is increased from 95 GHz to 760 GHz. The observed frequency dependence is qualitatively explained in terms of the dynamical charge disproportionation. The present results show the essential role of the internal charge degree of freedom in a V-O-V bond. We have also proposed the existence of the Dzyaloshinsky-Moriya interaction in the low temperature charge ordered phase considering the breaking of the selection rule of ESR realized as the direct observation of the spin gap excitation.Comment: 9 figures submitted to J. Phys.Soc. Jp

    Frustrated H-Induced Instability of Mo(110)

    Full text link
    Using helium atom scattering Hulpke and L"udecke recently observed a giant phonon anomaly for the hydrogen covered W(110) and Mo(110) surfaces. An explanation which is able to account for this and other experiments is still lacking. Below we present density-functional theory calculations of the atomic and electronic structure of the clean and hydrogen-covered Mo(110) surfaces. For the full adsorbate monolayer the calculations provide evidence for a strong Fermi surface nesting instability. This explains the observed anomalies and resolves the apparent inconsistencies of different experiments.Comment: 4 pages, 2 figures, submitted to PR
    corecore