6 research outputs found

    Knockdown of the long noncoding RNA PURPL induces apoptosis and sensitizes liver cancer cells to doxorubicin

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with increasing incidence in western countries. Most HCC patients have advanced cancer at the time of diagnosis due to the asymptomatic nature of early-stage HCC and do not qualify for potentially curative surgical treatment, thus, highlighting the need for new therapeutic strategies. Long noncoding RNAs (lncRNAs) comprise a large and heterogeneous group of non-protein coding transcripts that play important regulatory roles in numerous biological processes in cancer. In this study, we performed RNA sequencing of liver biopsies from ten HCC, ten hepatitis C virus-associated HCC, and four normal livers to identify dysregulated lncRNAs in HCC. We show that the lncRNA p53-upregulated-regulator-of-p53-levels (PURPL) is upregulated in HCC biopsies and that its expression is p53-dependent in liver cancer cell lines. In addition, antisense oligonucleotide-mediated knockdown of PURPL inhibited cell proliferation, induced apoptosis, and sensitized HepG2 human HCC cells to treatment with the chemotherapeutic agent doxorubicin. In summary, our findings suggest that PURPL could serve as a new therapeutic target for reversing doxorubicin resistance in HCC

    Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin

    Get PDF
    Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research (https://skin.science/)

    BIOSKIN: A Protocol for the Copenhagen Translational Skin Immunology Biobank and Research Programme

    No full text
    Introduction Psoriasis, atopic dermatitis and contact dermatitis are common chronic inflammatory skin diseases that have a significant impact on individuals and society.Methods and analysis The Copenhagen Translational Skin Immunology Biobank and Research Programme (BIOSKIN) is a translational biobank and research study that aims to prospectively collect high-quality biological samples and clinical data from 3000 patients with psoriasis, atopic dermatitis and contact dermatitis over a minimum period of 5 years. The longitudinal open design allows participants to enter and leave the study at different time points depending on their disease and treatment course. At every visit, the investigator collects biological samples, conducts interviews and assembles self-reported questionnaires on disease-specific and general health-related information. Clinical examination and biological sampling will be conducted at enrolment, during and after disease flare, before and after initiation of new treatment and at least once per year. The clinical examination includes dermatological verification of diagnosis, evaluation of disease severity and detailed information on phenotype. The biological samples include blood and when accessible and relevant, skin biopsies, tape strips and skin swabs. The data collected will undergo rigorous statistical analysis using appropriate analytical methods. As of December 2023, 825 patients have been enrolled in the study.Ethics and dissemination The study is approved by the Scientific Ethical Committee of the Capital Region (H-21032986) and the Danish Data Protection Agency. Results will be published in peer-reviewed scientific journals and presented at national and international conferences

    Development of siRNA Therapeutics for the Treatment of Liver Diseases

    No full text

    Knockdown of Circular RNAs Using LNA-Modified Antisense Oligonucleotides

    No full text
    Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs in vitro and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models

    Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin

    No full text
    Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research (https://skin.science/)
    corecore