167 research outputs found

    Development of an AmpliSeq (TM) Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain

    Get PDF
    Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeq (TM) panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 . 10(6) reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.Peer reviewe

    Linkage between increased nociception and olfaction via a SCN9A haplotype

    Get PDF
    Background and Aims: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. Methods: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14) or rs6746030C>T (R1150W; n = 21) were compared with non-carriers (n = 40). Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli). Results: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1), 1 allele: 10.6±2.6 (n = 34), 2 alleles: 9.5±2.1 (n = 40)). The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m2, 1 allele: 29.8±10.4 N/m2, 2 alleles: 33.5±10.2 N/m2). Conclusions: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level

    Machine-learned identification of psychological subgroups with relation to pain interference in patients after breast cancer treatments

    Get PDF
    Background: Persistent pain in breast cancer survivors is common. Psychological and sleep-related factors modulate perception, interpretation and coping with pain and may contribute to the clinical phenotype. The present analysis pursued the hypothesis that breast cancer survivors form subgroups, based on psychological and sleep-related parameters that are relevant to the impact of pain on the patients' life. Methods: We analysed 337 women treated for breast cancer, in whom psychological and sleep-related parameters as well as parameters related to pain intensity and interference had been acquired. Data were analysed by using supervised and unsupervised machine-learning techniques (i) to detect patient subgroups based on the pattern of psychological or sleep-related parameters, (ii) to interpret the detected cluster structure and (iii) to relate this data structure to pain interference and impact on life. Results: Artificial intelligence-based detection of data structure, implemented as self-organizing neuronal maps, identified two different clusters of patients. A smaller cluster (11.5% of the patients) had comparatively lower resilience, more depressive symptoms and lower extraversion than the other patients. In these patients, life-satisfaction, mood, and life in general were comparatively more impeded by persistent pain. Conclusions: The results support the initial hypothesis that psychological and sleep-related parameter patterns are meaningful for subgrouping patients with respect to how persistent pain after breast cancer treatments interferes with their life. This indicates that management of pain should address more complex features than just pain intensity. Artificial intelligence is a useful tool in the identification of subgroups of patients based on psychological factors. (C) 2020 The Authors. Published by Elsevier Ltd.Peer reviewe

    Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain

    Get PDF
    The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain genes” would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs

    Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain

    Get PDF
    The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain genes” would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs

    Machine-Learning Analysis of Serum Proteomics in Neuropathic Pain after Nerve Injury in Breast Cancer Surgery Points at Chemokine Signaling via SIRT2 Regulation

    Get PDF
    Background: Persistent postsurgical neuropathic pain (PPSNP) can occur after intraoperative damage to somatosensory nerves, with a prevalence of 29–57% in breast cancer surgery. Proteomics is an active research field in neuropathic pain and the first results support its utility for establishing diagnoses or finding therapy strategies. Methods: 57 women (30 non-PPSNP/27 PPSNP) who had experienced a surgeon-verified intercostobrachial nerve injury during breast cancer surgery, were examined for patterns in 74 serum proteomic markers that allowed discrimination between subgroups with or without PPSNP. Serum samples were obtained both before and after surgery. Results: Unsupervised data analyses, including principal component analysis and self-organizing maps of artificial neurons, revealed patterns that supported a data structure consistent with pain-related subgroup (non-PPSPN vs. PPSNP) separation. Subsequent supervised machine learning-based analyses revealed 19 proteins (CD244, SIRT2, CCL28, CXCL9, CCL20, CCL3, IL.10RA, MCP.1, TRAIL, CCL25, IL10, uPA, CCL4, DNER, STAMPB, CCL23, CST5, CCL11, FGF.23) that were informative for subgroup separation. In cross-validated training and testing of six different machine-learned algorithms, subgroup assignment was significantly better than chance, whereas this was not possible when training the algorithms with randomly permuted data or with the protein markers not selected. In particular, sirtuin 2 emerged as a key protein, presenting both before and after breast cancer treatments in the PPSNP compared with the non-PPSNP subgroup. Conclusions: The identified proteins play important roles in immune processes such as cell migration, chemotaxis, and cytokine-signaling. They also have considerable overlap with currently known targets of approved or investigational drugs. Taken together, several lines of unsupervised and supervised analyses pointed to structures in serum proteomics data, obtained before and after breast cancer surgery, that relate to neuroinflammatory processes associated with the development of neuropathic pain after an intraoperative nerve lesion

    Quick discrimination of A delta and C fiber mediated pain based on three verbal descriptors

    Get PDF
    Background: A delta and C fibers are the major pain-conducting nerve fibers, activate only partly the same brain areas, and are differently involved in pain syndromes. Whether a stimulus excites predominantly A delta or C fibers is a commonly asked question in basic pain research but a quick test was lacking so far. Methodology/Principal Findings: Of 77 verbal descriptors of pain sensations, "pricking", "dull" and "pressing" distinguished best (95% cases correctly) between A delta fiber mediated (punctate pressure produced by means of von Frey hairs) and C fiber mediated (blunt pressure) pain, applied to healthy volunteers in experiment 1. The sensation was assigned to A delta fibers when "pricking" but neither "dull" nor "pressing" were chosen, and to C fibers when the sum of the selections of "dull" or "pressing" was greater than that of the selection of "pricking". In experiment 2, with an independent cohort, the three-descriptor questionnaire achieved sensitivity and specificity above 0.95 for distinguishing fiber preferential non-mechanical induced pain (laser heat, exciting A delta fibers, and 5-Hz electric stimulation, exciting C fibers). Conclusion: A three-item verbal rating test using the words "pricking", "dull", and "pressing" may provide sufficient information to characterize a pain sensation evoked by a physical stimulus as transmitted via A delta or via C fibers. It meets the criteria of a screening test by being easy to administer, taking little time, being comfortable in handling, and inexpensive while providing high specificity for relevant information

    Agreeable Smellers and Sensitive Neurotics – Correlations among Personality Traits and Sensory Thresholds

    Get PDF
    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality
    corecore