81 research outputs found

    Optimisation of expression and purification of the feline and primate foamy virus transmembrane envelope proteins using a 96 deep well screen

    Get PDF
    The production of recombinant transmembrane proteins is due to their biochemical properties often troublesome and time consuming. Here the prokaryotic expression and purification of the transmembrane envelope proteins of the feline and primate foamy viruses using a screening assay for optimisation of expression in 96 deep well plates is described. Testing simultaneously various bacterial strains, media, temperatures, inducer concentrations and different transformants, conditions for an about twentyfold increased production were quickly determined. These small scale test conditions could be easily scaled up, allowing purification of milligram amounts of recombinant protein. Proteins with a purity of about 95% were produced using a new purification protocol, they were characterised by gel filtration and circular dichroism and successfully applied in immunological assays screening for foamy virus infection and in immunisation studies. Compared to the previously described protocol (M. Mühle, A. Bleiholder, S. Kolb, J. Hübner, M. Löchelt, J. Denner, Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening, Virology 412 (2011) 333–340), proteins with similar characteristics but about thirtyfold increased yields were obtained. The screening and production method presented here can also be applied for the production of transmembrane envelope proteins of other retroviruses, including HIV-1

    N-Terminally Myristoylated Feline Foamy Virus Gag Allows Env-Independent Budding of Sub-Viral Particles

    Get PDF
    Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation

    Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening

    Get PDF
    The transmembrane envelope (TM) proteins of retroviruses are used as antigen in diagnostic immunoassays and they represent a conserved target for neutralizing antibodies. To analyze the situation in infections with the feline foamy virus (FFV), its recombinant TM protein was produced and used for ELISA and Western blot analyses. Screening sera from 404 German cats showed that 39% reacted against the TM protein, the same infection rate was determined using the Gag protein. Epitope mapping showed antibodies against the membrane proximal external region (MPER) of the TM protein in the sera from infected cats, but attempts to induce neutralizing antibodies by immunization with the recombinant TM protein failed. This is the first report demonstrating that the TM protein of the FFV is highly immunogenic and valuable for serological screening. Similar to HIV-1, but in contrast to different gammaretroviruses, immunization with the TM protein of FFV did not induce neutralizing antibodies

    Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: Different ways to counteract host-encoded restriction

    Get PDF
    AbstractDefined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable

    The Unique, the Known, and the Unknown of Spumaretrovirus Assembly

    No full text
    Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission

    The Unique, the Known, and the Unknown of Spumaretrovirus Assembly

    No full text
    Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission

    Infection with Foamy Virus in Wild Ruminants—Evidence for a New Virus Reservoir?

    No full text
    Foamy viruses (FVs) are widely distributed and infect many animal species including non-human primates, horses, cattle, and cats. Several reports also suggest that other species can be FV hosts. Since most of such studies involved livestock or companion animals, we aimed to test blood samples from wild ruminants for the presence of FV-specific antibodies and, subsequently, genetic material. Out of 269 serum samples tested by ELISA with the bovine foamy virus (BFV) Gag and Bet antigens, 23 sera showed increased reactivity to at least one of them. High reactive sera represented 30% of bison samples and 7.5% of deer specimens. Eleven of the ELISA-positives were also strongly positive in immunoblot analyses. The peripheral blood DNA of seroreactive animals was tested by semi-nested PCR. The specific 275 bp fragment of the pol gene was amplified only in one sample collected from a red deer and the analysis of its sequence showed the highest homology for European BFV isolates. Such results may suggest the existence of a new FV reservoir in bison as well as in deer populations. Whether the origin of such infections stems from a new FV or is the result of BFV inter-species transmission remains to be clarified
    • …
    corecore