8 research outputs found

    Human vomeronasal epithelium development: An immunohistochemical overview

    Get PDF
    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development

    Determination of glutamate and gaba from rat central nervous system samples with HPLC utilizing fluorescent detection

    Get PDF
    The research of neurological diseases has great importance and the determination of neurotransmitter concentrations is essential during these investigations. The levels of main excitatory (glutamate) and inhibitory (γ-amino-butyric acid (GABA)) neurotransmitters often change as a result of pathological alterations. For example, in case of migraine, elevated glutamate release is suggested to be a part of the pathomechanism, causing hypersensitivity to pain. Our goal in this study was to optimize a liquid chromatography method to measure glutamate and GABA from the trigeminal nucleus pars caudalis (TNC) of rats, which is responsible for pain processing. As a result, we were able to validate our method according to international guidelines where the investigated parameters were LOD, LOQ, precision and recovery. Furthermore, we applied a new internal standard which has not been published so far. This method will be utilized in the investigation of migraine animal models to evaluate potential new therapeutic approaches

    The Influence of Oxidative Stress-Related Factors on Pregnancy and Neonatal Outcomes

    No full text
    Background: Pregnancy is a physiological process associated with an excessive oxidative stress for both the mother and the neonate. Oxidative stress was extensively studied and is still in focus as a factor of maternal pathologies during pregnancy, with consequences on the outcome of the neonate

    An Anatomical Variation of Terminal Branches of the Thoracoacromial Artery – Case Report

    No full text
    Introduction: Mapping the branching patterns of the thoracoacromial artery has a particular practical importance. Familiarity with the different anatomical variations is essential for successful surgical procedures in the anterior shoulder region

    Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, we investigated the localization and expression of CFTR during cerulein-induced AP in mice and determined the effects of CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. CFTR mRNA expression was significantly increased, and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on our results, the utilization of CFTR correctors and potentiators should be further investigated in AP.Cystic fibrosis transmembrane conductance regulator (CFTR) has essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50μg/kg cerulein. Some mice were pre-treated with 5-6 daily injections of 2mg/kg VX-661+VX-770. Control animals were administered physiological saline instead of cerulein and DMSO instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expressions were measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12-24h. CFTR mRNA expression was significantly increased 24h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6h, while expression increased at 24h compared to control. Ductal HCO3- transport activity was significantly increased 6h after AP induction. AP mice pre-treatment with VX-661+VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661+VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. This article is protected by copyright. All rights reserved

    Finite Element Analysis of Normal and Dysplastic Hip Joints in Children

    No full text
    From a surgical point of view, quantification cannot always be achieved in the developmental deformity in hip joints, but finite element analysis can be a helpful tool to compare normal joint architecture with a dysplastic counterpart. CT scans from the normal right hip of an 8-year-old boy and the dysplastic left hip of a 12-year-old girl were used to construct our geometric models. In a three-dimensional model construction, distinctions were made between the cortical bone, trabecular bone, cartilage, and contact nonlinearities of the hip joint. The mathematical model incorporated the consideration of the linear elastic and isotropic properties of bony tissue in children, separately for the cortical bone, trabecular bone, and articular cartilage. Hexahedral elements were used in Autodesk Inventor software version 2022 (“Ren”) for finite element analysis of the two hips in the boundary conditions of the single-leg stance. In the normal hip joint on the cartilaginous surfaces of the acetabulum, we found a kidney-shaped stress distribution in a 471,672 mm2 area. The measured contact pressure values were between 3.0 and 4.3 MPa. In the dysplastic pediatric hip joint on a patch of 205,272 mm2 contact area, the contact pressure values reached 8.5 MPa. Furthermore, the acetabulum/femur head volume ratio was 20% higher in the dysplastic hip joint. We believe that the knowledge gained from the normal and dysplastic pediatric hip joints can be used to develop surgical treatment methods and quantify and compare the efficiency of different surgical treatments used in children with hip dysplasia

    The Management of COVID-19-Related Coagulopathy: A Focus on the Challenges of Metabolic and Vascular Diseases

    No full text
    The course of COVID-19 is highly dependent on the associated cardiometabolic comorbidities of the patient, which worsen the prognosis of coronavirus infection, mainly due to systemic inflammation, endothelium dysfunction, and thrombosis. A search on the recent medical literature was performed in five languages, using the PubMed, Embase, Cochrane, and Google Scholar databases, for the review of data regarding the management of patients with a high risk for severe COVID-19, focusing on the associated coagulopathy. Special features of COVID-19 management are presented, based on the underlying conditions (obesity, diabetes mellitus, and cardiovascular diseases), emphasizing the necessity of a modern, holistic approach to thromboembolic states. The latest findings regarding the most efficient therapeutic approaches are included in the article, offering guidance for medical professionals in severe, complicated cases of SARS-CoV-2 infection. We can conclude that severe COVID-19 is closely related to vascular inflammation and intense cytokine release leading to hemostasis disorders. Overweight, hyperglycemia, cardiovascular diseases, and old age are important risk factors for severe outcomes of coronavirus infection, involving a hypercoagulable state. Early diagnosis and proper therapy in complicated SARS-CoV-2-infected cases could reduce mortality and the need for intensive care during hospitalization in patients with cardiometabolic comorbidities

    Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs—Comprehensive Review

    No full text
    Hypertension is a highly prevalent population-level disease that represents an important risk factor for several cardiovascular complications and occupies a leading position in mortality statistics. Antihypertensive therapy includes a wide variety of drugs. Additionally, the potential antihypertensive and cardioprotective effects of several phytotherapy products have been evaluated, as these could also be a valuable therapeutic option for the prevention, improvement or treatment of hypertension and its complications. The present review includes an evaluation of the cardioprotective and antihypertensive effects of garlic, Aloe vera, green tea, Ginkgo biloba, berberine, ginseng, Nigella sativa, Apium graveolens, thyme, cinnamon and ginger, and their possible interactions with antihypertensive drugs. A literature search was undertaken via the PubMed, Google Scholar, Embase and Cochrane databases. Research articles, systematic reviews and meta-analyses published between 2010 and 2023, in the English, Hungarian, and Romanian languages were selected
    corecore