22 research outputs found
Neurofilament proteins in the postnatal rat hippocampus. Developmental expression and changes in experimental epilepsy
Neurofilament proteins (NFs) are the major components of the intermediate filaments of the neuronal cytoskeleton. The three different NF proteins; the low (NF-L), medium (NF-M),and dendrites.NF proteins play an important role in neuronal development, and plasticity,and seem to contribute to the pathophysiology of several diseases. However, the detailed expression patterns of NF proteins in the course of postnatal aturation, and in response to seizures in the rat have remained unknown. In this work, I have studied the developmental expression and cellular distribution of the three NF proteins in the rat hippocampus during the postnatal development. The reactivity of NF proteins in response to kainic acid (KA)-induced status epilepticus (SE)was studied in the hippocampus of 9-day-old rats, and using in vitro organotypic hippocampal slices cultures prepared from P6-7 rats.
The results showed that NF-L and NF-M proteins are expressed already at the postnatal day 1, while the expression of NF-H mainly occurred during the second postnatal week. The immunoreactivity of NF proteins varied depending on the cell type and sub-cellular location in the hippocampus. In adult rats, KA-induced SE typically results in severe and permanent NF degradation. However, in our P9 rats KA-induced SE resulted in a transient increase in the expression of NF proteins during the first few hours but not degradation. No neuronal death or mossy fiber sprouting was observed at any time after SE. The in vitro studies with OHCs, which mimick the in vivo developing models where a local injection of KA is applied(e.g. intrahippocampal), indicated that NF proteins were rapidly degraded in response to KA treatment, this effect being effectively inhibited by the treatment with the AMPA receptor antagonist CNQX, and calpain inhibitor MDL-28170. These compounds also significantly ameliorated the KA-induced region-specific neuronal damage. The NMDA receptor antagonist and the L-type Ca2+ channel blocker did not have any significant effect.
In conclusion, the results indicate that the developmental expression of NF in the rat hippocampus is differentially regulated and targeted in the different hippocampal cell types during the postnatal development. Furthermore, despite SE, the mechanisms leading to NF degradation and neuronal death are not activated in P9 rats unlike in adults. The reason for this remains unknown. The results in organotypic hippocampal cultures confirm the validity of this in vitro model to study development processes, and to perform pharmacological studies. The results also suggest that calpain proteases as interesting pharmacological targets to reduce neuronal damage after acute excitotoxic insults.Siirretty Doriast
Longitudinal [18F]FDG and [13N]NH3 PET/CT imaging of brain and spinal cord in a canine hemisection spinal cord injury model
To further understand the neurological changes induced by spinal cord injury (SCI) in its acute and subacute stages, we evaluated longitudinal changes in glucose and glutamate metabolism in the spinal cord and brain regions of a canine hemisection SCI model. [18F]FDG and [13N]NH3 positron-emission tomography (PET) with computed tomography (CT) was performed before SCI and at 1, 3, 7, 14, and 21 days after SCI. Spinal cord [18F]FDG uptake increased and peaked at 3 days post SCI. Similar changes were observed in the brain regions but were not statistically significant. Compared to the acute phase of SCI, [13N]NH3 uptake increased in the subacute stage and peaked at 7 days post SCI in all analyzed brain regions. But in spinal cord, no [13N]NH3 uptake was detected before SCI when the blood-spinal cord barrier (BSCB) was intact, then gradually increased when the BSCB was damaged after SCI. [13N]NH3 uptake was significantly correlated with plasma levels of the BSCB disruption marker, monocyte chemoattractant protein-1 (MCP-1). Overall, we showed that SCI induced in vivo changes in glucose uptake in both the spinal cord and the examined brain regions, and changes in glutamine synthetase activity in the latter. Moreover, our results suggest that [13N]NH3 PET may serve as a potential method for assessing BSCB permeability in vivo.</div
Effect of genotype and age on cerebral [F-18]FDG uptake varies between transgenic APP(swe)-PS1(dE9) and Tg2576 mouse models of Alzheimer's disease
Back-translation of clinical imaging biomarkers of Alzheimer's disease (AD), such as alterations in cerebral glucose metabolism detected by [F-18]FDG positron emission tomography (PET), would be valuable for preclinical studies evaluating new disease-modifying drugs for AD. However, previous confounding results have been difficult to interpret due to differences in mouse models and imaging protocols between studies. We used an equivalent study design and [F-18]FDG mu PET imaging protocol to compare changes in cerebral glucose metabolism in commercial transgenic APP(swe)-PS1(dE9) (n = 12), Tg2576 (n = 15), and wild-type mice (n = 15 and 9). Dynamic [F-18]FDG scans were performed in young (6 months) and aged (12 or 17 months) mice and the results verified by ex vivo methods (i.e., tissue counting, digital autoradiography, and beta-amyloid and Iba-1 immunohistochemistry). [F-18]FDG uptake exhibited significant regional differences between genotypes (TG < WT) and ages (6 months <12 months) in the APP(swe)-PS1(dE9) model, whereas similar differences were not present in Tg2576 mice. In both models, only weak correlations were detected between regional beta-amyloid deposition or microgliosis and [F-18]FDG uptake. By using equivalent methodology, this study demonstrated differences in cerebral glucose metabolism dysfunction detected with [F-18]FDG PET between two widely used commercial AD mouse models
applicability of 11c pib micro pet imaging for in vivo follow up of anti amyloid treatment effects in app23 mouse model
Abstract In this study, we evaluated the anti-amyloid effect of functionalized nanoliposomes (mApoE-PA-LIP) in a mouse model of Alzheimer's disease with use of positron emission tomography and β-amyloid (Aβ)–targeted tracer [11C]Pittsburgh compound B ([11C]PIB). APP23 mice were injected with mApoE-PA-LIP or saline (3 times per week for 3 weeks) and [11C]PIB imaging was performed at baseline, after the treatment and after 3 months follow-up period, accompanied by Aβ immunohistochemistry and ELISA. After the treatment, [11C]PIB binding ratios between mApoE-PA-LIP and saline groups were equivalent in all analyzed brain regions; however, in the saline group, binding ratios increased from the baseline, whereas no increase was detected in the mApoE-PA-LIP group. During the additional follow-up, [11C]PIB binding increased significantly from baseline in both groups, and binding ratios correlated with the immunohistochemically defined Aβ load. This study further supports the use of [11C]PIB positron emission tomography imaging as a biomarker of Aβ deposition in APP23 mice and highlights the benefits of noninvasive follow-up, that is, using baseline data for animal stratification and normalization of treatment effects to baseline values, for future anti-amyloid treatment studies
(S)-[18F]THK5117 brain uptake is associated with Aβ plaques and MAO-B enzyme in a mouse model of Alzheimer's disease
The mouse model of beta-amyloid (Aβ) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aβ plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aβ deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aβ plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aβ deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau
Direct Comparison of [18F]F-DPA with [18F]DPA-714 and [11C]PBR28 for Neuroinflammation Imaging in the same Alzheimer’s Disease Model Mice and Healthy Controls
PurposeIn this study we compared the recently developed TSPO tracer [18F]F-DPA, with [18F]DPA-714 and [11C]PBR28 by performing in vivo PET imaging on the same Alzheimer’s disease mouse model APP/PS1-21 (TG) and wild-type (WT) mice with all three radiotracers.ProceduresTo compare the radiotracer uptake, percentage of injected dose/mL (%ID/mL), standardized uptake value ratios to cerebellum (SUVRCB), and voxel-wise analyses were performed.ResultsThe peak uptake of [18F]F-DPA was higher than 4.3% ID/mL, while [18F]DPA-714 reached just over 3% ID/mL, and [11C]PBR28 was over 4% ID/mL in only one brain region in the WT mice. The peak/60-min uptake ratios of [18F]F-DPA were significantly higher (p 18F]DPA-714 and [11C]PBR28. The differences in [18F]F-DPA SUVRCB between WT and TG mice were highly significant (p 18F]DPA-714 uptake was significantly higher in TG mice starting in the 20–40-min timeframe and increased thereafter, whereas [11C]PBR28 uptake became significant at 10–20 min (p Conclusions[18F]F-DPA displays higher brain uptake, higher TG-to-WT SUVRCB ratios, and faster clearance than [18F]DPA-714 and [11C]PBR28, and could prove useful for detecting low levels of inflammation and allow for shorter dynamic PET scans.</p
Intravenous transplantation of olfactory ensheathing cells reduces neuroinflammation after spinal cord injury via interleukin-1 receptor antagonist
Rationale: Olfactory ensheathing cell (OEC) transplantation has emerged as a promising therapy for spinal cord injury (SCI) repair. In the present study, we explored the possible mechanisms of OECs transplantation underlying neuroinflammation modulation.Methods: Spinal cord inflammation after intravenous OEC transplantation was detected in vivo and ex vivo by translocator protein PET tracer [F-18]F-DPA. To track transplanted cells, OECs were transduced with enhanced green fluorescent protein (eGFP) and HSV1-39tk using lentiviral vector and were monitored by fluorescence imaging and [F-18]FHBG study. Protein microarray analysis and ELISA studies were employed to analyze differential proteins in the injured spinal cord after OEC transplantation. The anti-inflammation function of the upregulated protein was also proved by in vitro gene knocking down experiments and OECs/microglia co-culture experiment.Results: The inflammation in the spinal cord was decreased after OEC intravenous transplantation. The HSV1-39tk-eGFP-transduced OECs showed no accumulation in major organs and were found at the injury site. After OEC transplantation, in the spinal cord tissues, the interleukin-1 receptor antagonist (IL-1Ra) was highly upregulated while many chemokines, including pro-inflammatory chemokines IL-1 alpha, IL-1 beta were downregulated. In vitro studies confirmed that lipopolysaccharide (LPS) stimulus triggered OECs to secrete IL-1Ra. OECs significantly suppressed LPS-stimulated microglial activity, whereas IL-1Ra gene knockdown significantly reduced their ability to modulate microglial activity.Conclusion: The OECs that reached the lesion site were activated by the release of pro-inflammatory cytokines from activated microglia in the lesion site and secreted IL-1Ra to reduce neuroinflammation. Intravenous transplantation of OECs has high therapeutic effectiveness for the treatment of SCI via the secretion of IL-1Ra to reduce neuroinflammation
Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic
This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
Innovación en las enseñanzas universitarias: experiencias presentadas en las III Jornadas de Innovación Educativa de la ULL
En este libro se recoge un conjunto de experiencias de innovación educativa desarrolladas en la ULL en el curso 2011-12. Se abordan distintos ámbitos y ramas del conocimiento, y ocupan temáticas variadas que han sido desarrolladas con rigor, y con un claro potencial para su extrapolación a efectos de la mejora educativa en el ámbito universitario. Esta publicación constituye una primera
edición de una serie que irá recogiendo las experiencias de innovación educativa de la ULL. Este es un paso relevante para su impulso en nuestra institución, como lo es el de su vinculación con la investigación educativa, para potenciar
su publicación en las revistas científicas en este ámbito cada vez más pujante y relevante para las universidades. Sobre todo representan el deseo y el compromiso del profesorado de la ULL para la mejora del proceso educativo mediante
la investigación, la evaluación y la reflexión compartida de nuestras prácticas y planteamientos docentes