10 research outputs found

    Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism

    Get PDF
    Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range

    Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer

    Get PDF
    Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.This study was funded by Institute of Health Carlos III (ISCiii) (PI16/00090, PI19/00838 and PI19/01266), Spanish Ministry of Economy and Competitiveness (BFU2016-80006-P), Andalusian Ministry of Economy, Innovation, Science and Employment (BIO-216 and CTS-6264), Andalusian Ministry of Equality, Health and Social Policies (PI-0198-2016) and Valencian Ministry of Education, Culture and Sports (PROMETEO/2019/027). P de la C-O was supported by FPU predoctoral fellowship (FPU17/00026) from Spanish Ministry of Education, Culture and Sports. E N-V was supported by the the predoctoral i-PFIS IIS-enterprise contract in science and technologies in health (IFI18/00014) from ISCiii. We thank the Biomedical Research Network Center for Cardiovascular Diseases (CIBERcv), and the Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd) founded by the ISCiii and co-financed by European Regional Development Fund (ERDF) "A way to achieve Europe" for their financial support

    Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism

    No full text
    Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range.TC-L was the recipient of a contract from Comunidad de Madrid (PEJ16/MED/AI-0818). This work was supported by the grants Contract QLK3-CT-2001-01010 (European Commission), S2013/ABI-2906-FEDER (Comunidad de Madrid), SAF2015-68522-P-MINECO/FEDER,UE (Ministerio de Ciencia, Investigación y Universidades), and PID2019-111146RB-I00 (Ministerio de Ciencia e Innovación) to JA. The Centro de Biología Molecular Severo Ochoa (CSIC-UAM) is in part supported by institutional grants from the Fundación Ramón Areces and Banco Santander

    Antiangiogenic Vascular Endothelial Growth Factor-Blocking Peptides Displayed on the Capsid of an Infectious Oncolytic Parvovirus: Assembly and Immune Interactions

    Get PDF
    As many tumor cells synthetize vascular endothelial growth factors (VEGF) that promote neo-vascularization and metastasis, frontline cancer therapies often administer anti-VEGF (α-VEGF) antibodies. To target the oncolytic parvovirus minute virus of mice (MVM) to the tumor vasculature, we studied the functional tolerance, evasion of neutralization, and induction of α-VEGF antibodies of chimeric viruses in which the footprint of a neutralizing monoclonal antibody within the 3-fold capsid spike was replaced by VEGF-blocking peptides: P6L (PQPRPL) and A7R (ATWLPPR). Both peptides allowed viral genome replication and nuclear translocation of chimeric capsid subunits. MVM-P6L efficiently propagated in culture, exposing the heterologous peptide on the capsid surface, and evaded neutralization by the anti-spike monoclonal antibody. In contrast, MVM-A7R yielded low infectious titers and was poorly recognized by an α-A7R monoclonal antibody. MVM-A7R showed a deficient assembly pattern, suggesting that A7R impaired a transitional configuration that the subunits must undergo in the 3-fold axis to close up the capsid shell. The MVM-A7R chimeric virus consistently evolved in culture into a mutant carrying the P6Q amino acid substitution within the A7R sequence, which restored normal capsid assembly and infectivity. Consistent with this finding, anti-native VEGF antibodies were induced in mice by a single injection of MVM-A7R empty capsids, but not by MVM-A7R virions. This fundamental study provides insights to endow an infectious parvovirus with immune antineovascularization and evasion capacities by replacing an antibody footprint in the capsid 3-fold axis with VEGF-blocking peptides, and it also illustrates the evolutionary capacity of single-stranded DNA (ssDNA) viruses to overcome engineered capsid structural restrictions.IMPORTANCE Targeting the VEGF signaling required for neovascularization by vaccination with chimeric capsids of oncolytic viruses may boost therapy for solid tumors. VEGF-blocking peptides (VEbp) engineered in the capsid 3-fold axis endowed the infectious parvovirus MVM with the ability to induce α-VEGF antibodies without adjuvant and to evade neutralization by MVM-specific antibodies. However, these properties may be compromised by structural restraints that the capsid imposes on the peptide configuration and by misassembly caused by the heterologous peptides. Significantly, chimeric MVM-VEbp resolved the structural restrictions by selecting mutations within the engineered peptides that restored efficient capsid assembly. These data show the promise of antineovascularization vaccines using chimeric VEbp-icosahedral capsids of oncolytic viruses but also raise safety concerns regarding the genetic stability of manipulated infectious parvoviruses in cancer and gene therapies.This work was supported by the following grants: contract QLK3-CT-2001-01010 (European Commission), SAF2011-29403 (Spanish Ministerio de Ciencia e Innovación), SAF2015-68522-P-MINECO/FEDER, UE (Spanish Ministerio de Economía y Competitividad and Ministerio de Ciencia, Investigación y Universidades), and S2013/ABI-2906-FEDER (Comunidad de Madrid) to J.M.A. and institutional grants from the Fundación Ramón Areces and Banco Santander to the Centro de Biología Molecular Severo Ochoa (CSIC-UAM

    Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer

    Get PDF
    Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments

    Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer

    Get PDF
    Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.This study was funded by Institute of Health Carlos III (ISCiii) (PI16/00090, PI19/00838 and PI19/01266), Spanish Ministry of Economy and Competitiveness (BFU2016-80006-P), Andalusian Ministry of Economy, Innovation, Science and Employment (BIO-216 and CTS-6264), Andalusian Ministry of Equality, Health and Social Policies (PI-0198-2016) and Valencian Ministry of Education, Culture and Sports (PROMETEO/2019/027). P de la C-O was supported by FPU predoctoral fellowship (FPU17/00026) from Spanish Ministry of Education, Culture and Sports. E N-V was supported by the the predoctoral i-PFIS IIS-enterprise contract in science and technologies in health (IFI18/00014) from ISCiii.Ye

    Kant-Bibliographie 2004

    No full text
    corecore