60 research outputs found

    Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain: Mechanisms controlling the guidance of thalamocortical axons

    Get PDF
    Thalamocortical axons must cross a complex cellular terrain through the developing forebrain and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells, various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has out knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms relating to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms

    Uncoupling of EphA/ephrinA signaling and spontaneous activity in neural circuit wiring

    Get PDF
    Classic studies have proposed that genetically encoded programs and spontaneous activity play complementary but independent roles in the development of neural circuits. Recent evidence, however, suggests that these two mechanisms could interact extensively, with spontaneous activity affecting the expression and function of guidance molecules at early developmental stages. Here, using the developing chick spinal cord and the mouse visual system to ectopically express the inwardly rectifying potassium channel Kir2.1 in individual embryonic neurons, we demonstrate that cell-intrinsic blockade of spontaneous activity in vivo does not affect neuronal identity specification, axon pathfinding, or EphA/ephrinA signaling during the development of topographic maps. However, intrinsic spontaneous activity is critical for axon branching and pruning once axonal growth cones reach their correct topographic position in the target tissues. Our experiments argue for the dissociation of spontaneous activity from hard-wired developmental programs in early phases of neural circuit formation.This work was supported by grants from the Regional Government (Prometeo 2012-005) and the Spanish Government (BFU2010-16563) to E.H. (BFU2007-67834 and BFU2010-22220) to L.M., and from the European Research Council (ERC-2011-StG_20101109) to E.H. and (ERC-2009-StG_20081210) G.L.-B., I.B. and G.C. are Consolider-Ingenio fellows (CDS2007-023). A.K. is supported by the Canadian Institutes of Health Research (Operating Grant MOP-77556) and the Natural Sciences and Engineering Research Council of Canada. D.M. holds a Mexican Council for Science and Technology (Conacyt) graduate scholarship.Peer reviewe

    Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1

    Get PDF
    Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.We thank the IBENS Imaging Facility (France BioImaging, supported by ANR-10-INBS-04, ANR-10-LABX-54 MEMO LIFE, and ANR-11-IDEX-000-02 PSL∗ Research University, “Investments for the Future”). This work was supported by grants from the Spanish Ministry of Science, Innovation, and Universities (PGC2018-096631-B-I00) and the European Research Council (ERC-2014-CoG-647012) to G.L.-B. N.C. received funding from the Marie Skłodowska-Curie individual fellowship under the European Union’s Horizon 2020 research and innovation program (AXO-MATH, grant agreement no. 798326). F.G. received funding from the Agence Nationale de la Recherche (SyTune, ANR-21-CE37-0010), the European Research Council under the European Union’s Horizon 2020 research and innovation program (NEUROGOAL, grant agreement no.677878), the Region Nouvelle-Aquitaine, and the University of Bordeaux. The Garel laboratory is supported by INSERM, CNRS, ANR-15-CE16-0003, ANR-19-CE16-0017-02, Investissements d’Avenir implemented by ANR-10-LABX-54 MEMO LIFE, ANR-11-IDEX-0001-02 PSL∗ Research University, and the European Research Council (ERC-2013-CoG-616080, NImO). I.G. is a recipient of a fellowship from the French Ministry of Research and postdoctoral funding from Labex MemoLife, and S.G. is part of the Ecole des Neurosciences de Paris Ile-de-France network.Peer reviewe

    A unique bipartite Polycomb signature regulates stimulus-response transcription during development

    Get PDF
    Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.T.K. was supported by a Japan Society for the Promotion of Science fellowship, and O.J. was supported by an EMBO Long-Term fellowship. F.M.R. was supported by the Swiss National Science Foundation (31003A_149573 and 31003A_175776). This project has also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 810111-EpiCrest2Reg). F.M.R. and M.B.S. were also supported by the Novartis Research Foundation.Peer reviewe

    Adenosine A2A receptors contribute to the radial migration of cortical projection neurons through the regulation of neuronal polarization and axon formation

    Get PDF
    Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar–bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5′-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.European Regional Development Fund, through the Centro 2020 Regional Operational Programme (CENTRO-01-0145-FEDER-000008; BrainHealth2020); COMPETE 2020-Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT—Fundação para a Ciência e Tecnologia (PTDC/NEU-NMC/3567/2014 to R.J.R.; POCI-01-0145-FEDER-028160 to J.M.M.); Center for Neuroscience and Cell Biology (POCI-01-0145-FEDER-007440; UIDB/04539/2020); Spanish Ministry of Science, Innovation and Universities (PGC2018/096631-B-100 to G.L-B.).Peer reviewe

    Prenatal thalamic waves regulate cortical area size prior to sensory processing

    Get PDF
    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.V.M.-J. holds a ‘Severo Ochoa’ PhD fellowship and N.A.-B. a FPI fellowship, both from the MINECO. C.M. held a JAE-Predoc fellowship from the CSIC, and H.G. held postdoctoral fellowships from the Swedish Research council and Brain Foundation. Supported by the Swiss National Science Foundation (31003A_149573) and the Novartis Research Foundation to F.M.R., the JSPS KAKENHI (JP16H06459) to T.I. and by the Spanish MINECO BFU2012-34298 and BFU2015-64432-R, and two European Commission Grants ERC-2009-StG-20081210 and ERC-2014-CoG-647012 to G.L.-B. G.L.-B. is an EMBO YIP Investigator and a FENS-Kavli scholar.Peer reviewe

    Development of the thalamocortical interactions: Past, present and future

    No full text
    For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.This work was supported by the Spanish MINECO BFU2015-64432-R, the Spanish State Research Agency through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2013-0317), the PROMETEO/2017/149, and the European Commission Grant ERC-2014-CoG-647012. G. L-B is an EMBO YIP Investigator and a FENS-Kavli scholar.Peer reviewe

    Shaping brain connections through spontaneous neural activity

    No full text
    An overwhelming number of observations demonstrate that neural activity and genetic programs interact to specify the composition and organization of neural circuits during all stages of development. Spontaneous neuronal activities have been documented in several developing neural regions in both invertebrates and vertebrates, and their roles are mostly conserved among species. Among these roles, Ca 2+ spikes and levels of electrical activity have been shown to regulate neurite growth, axon extension and axon branching. Here, we review selected findings concerning the role of spontaneous activity on circuit development. An overwhelming number of observations demonstrate that neural activity and genetic programs interact to specify the composition and organization of neural circuits during all stages of development. Spontaneous neuronal activities have been documented in several developing neural regions in both invertebrates and vertebrates, and their roles are mostly conserved among species. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.Supported by Spanish MICINN Grant BFU2009-08261, HFSPO Grant RGP29/2008 and ERC Grant ERC-2009-StG_20081210 to G.L.-B., and Grants-in-Aid for Scientific Research Projects 203001100 and 20021018 from the Japanese Ministry of Education, Culture, Sports, Science and Technology to N.Y.Peer Reviewe

    Thalamic neuronal specification and early circuit formation.

    No full text
    The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given.H.G. held postdoc fellowships from the Swedish Research Council and the Swedish Brain Foundation. G. L-B is an EMBO YIP Investigator and a FENS-Kavli Scholar.Peer reviewe

    Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view

    No full text
    Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state–of-the–art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss.This work was supported by the Spanish MINECO BFU2012-34298 and an ERC Grant ERC-2009-StG_20081210 to G.L-B. G.L-B. is an EMBO Young Investigator.Peer reviewe
    corecore