20,176 research outputs found

    One-dimensional relativistic dissipative system with constant force and its quantization

    Full text link
    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.Comment: 11 pages, no figure

    Velocity quantization approach of the one-dimensional dissipative harmonic oscillator

    Full text link
    Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian.Comment: 10 pages, 2 figure

    Non-Resonant Effects in Implementation of Quantum Shor Algorithm

    Get PDF
    We simulate Shor's algorithm on an Ising spin quantum computer. The influence of non-resonant effects is analyzed in detail. It is shown that our ``2πk2\pi k''-method successfully suppresses non-resonant effects even for relatively large values of the Rabi frequency.Comment: 11 pages, 13 figure

    Magnetic Monopole in the Loop Representation

    Full text link
    We quantize the electromagnetic field in the presence of a static magnetic monopole, within the loop-representation formalism. We find that the loop-dependent wave functional becomes multivalued, in the sense that it acquires a dependence on the surfaces bounded by the loop. This generalizes what occurs in quantum mechanics in multiply connected spaces. When Dirac's quantization condition holds, this surface-dependence disappears, together with the effect of the monopole on the electromagnetic field.Comment: reference and comment adde

    Simulation of static and random errors on Grover's search algorithm implemented in a Ising nuclear spin chain quantum computer with few qubits

    Full text link
    We consider Grover's search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the external fields. By averaging over many repetitions of the algorithm, the output state becomes effectively a mixed state. We study its overlap with the nominal output state of the algorithm, which is called fidelity. We find either an exponential or a Gaussian decay for the fidelity as a function of the strength of the noise, depending on the type of noise (static or random) and whether error supression is applied (the 2pi k-method) or not.Comment: 18 pages, 8 figures, extensive revision with new figure
    corecore