4 research outputs found

    ABC-SPH risk score for in-hospital mortality in COVID-19 patients : development, external validation and comparison with other available scores

    No full text
    The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March-July, 2020. The model was validated in the 1054 patients admitted during August-September, as well as in an external cohort of 474 Spanish patients. Median (25-75th percentile) age of the model-derivation cohort was 60 (48-72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO/FiO ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829-0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833-0.885]) and Spanish (0.894 [95% CI 0.870-0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19

    ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients

    Get PDF
    Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p

    Bioenergia: desenvolvimento, pesquisa e inovação

    No full text
    Com 27 trabalhos produzidos por pesquisadores do Instituto de Pesquisa em Bioenergia (Bioen), da Unesp, este livro oferece uma ampla visão sobre as áreas que compõem o segmento. Seu principal objetivo é contribuir para melhorar a compreensão dos vários aspectos da bioenergia, em especial no Brasil, que figura entre os países com maior nível de desenvolvimento tecnológico no setor. Os artigos abordam uma série abrangente de questões relacionadas à bioenergia, como a construção genética das plantas de cana-de-açúcar visando ao aumento de produtividade, a disseminação de sementes para estimular a propagação de espécies com potencial energético, etapas de produção de bioenergia, usos do combustível e seus efeitos nos diversos tipos de motores. Agrupados por assunto, os textos estão distribuídos em cinco partes: Biomassa para bioenergia; Produção de biocombustíveis; Utilização de bioenergia; Biorrefinaria, alcoolquímica e oleoquímica e Sustentabilidade dos biocombustíveis
    corecore