30 research outputs found

    One stop shop: backbones trees for important phytopathogenic genera: I (2014)

    Get PDF
    Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper

    Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada

    No full text
    Three new species of Pythium, namely, P. oopapillum, P. emineosum and P. camurandrum are presented in this paper based on morphological descriptions and molecular phylogenetic characterisation. These new species were isolated from various ecological regions in Canada. They have unique morphological features in the genus Pythium, and form distinct clades in maximum parsimony analyses, which are also supported by maximum likelihood phylogeny using general time reversible model (GTR), and Bayesian inference (BI) phylogeny using Markov Chain Monte Carlo (MCMC) analysis methods. A comparative study of the new species with closely related taxa, their clade positions, and morphological features are described in this paper

    COI and ITS - DNA barcode comparison for Pythium species.

    No full text

    Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray

    No full text
    Detection, identification and quantification of plant pathogens are the cornerstones of preventive plant disease management. To detect multiple pathogens in a single assay, DNA array technology currently is the most suitable technique. However, for sensitive detection, polymerase chain reaction (PCR) amplification before array hybridization is required. To evaluate whether DNA array technology can be used to simultaneously detect and quantify multiple pathogens, a DNA macroarray was designed and optimized for accurate quantification over at least three orders of magnitude of the economically important vascular wilt pathogens Verticillium albo-atrum and Verticillium dahliae. A strong correlation was observed between hybridization signals and pathogen concentrations for standard DNA added to DNA from different origins and for infested samples. While accounting for specific criteria like amount of immobilized detector oligonucleotide and controls for PCR kinetics, accurate quantification of pathogens was achieved in concentration ranges typically encountered in horticultural practice. Subsequently, quantitative assessment of other tomato pathogens (Fusarium oxysporum, Fusarium solani, Pythium ultimum and Rhizoctonia solani) in environmental samples was performed using DNA array technology and correlated to measurements obtained using real-time PCR. As both methods of quantification showed a very high degree of correlation, the reliability and robustness of the DNA array technology is show

    Design and development of a DNA array for rapid detection and identification of tomato vascular wilt pathogens

    No full text
    Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, and Verticillium wilt, caused by either Verticillium albo-atrum or Verticillium dahliae, are devastating diseases of tomato (Lycopersicon esculentum) found worldwide. Monitoring is the cornerstone of integrated pest management of any disease. The lack of rapid, accurate, and reliable means by which plant pathogens can be detected and identified is one of the main limitations in integrated disease management. In this paper, we describe the development of a molecular detection system, based on DNA array technology, for rapid and efficient detection of these vascular wilt pathogens. We show the utility of this array for the sensitive detection of these pathogens from complex substrates like soil, plant tissues and irrigation water, and samples that are collected by tomato growers in their greenhouses

    Identification of fungal DNA barcode targets and PCR primers based on Pfam protein families and taxonomic hierarchy

    No full text
    Abstract: DNA barcoding is the application of DNA sequences of standardized genetic markers for the identification of eukaryotic organisms. We attempted to identify alternative candidate barcode gene targets for the fungal biota from available fungal genomes using a taxonomy-aware processing pipeline. Putative-protein coding sequences were matched to Pfam protein families and aligned to reference Pfam accessions. Conserved sequence blocks were identified in the resulting alignments and degenerate primers were designed. The processing pipeline is described and the resulting candidate gene targets are discussed. The pipeline allows analysis of subsets at various hierarchical, taxonomic levels (selectable by GenBank taxonomy ID or scientific name) of the available reference data, allowing discrete taxonomic groups to be combined into a single subset, or for subordinate taxa to be excluded from the analysis of higher-level taxa. Putative degenerate primer pairs were designed as high as the superkingdom rank for the set of organisms included in the analysis. The identified targets have essential housekeeping functions, like the well known phylogenetic or barcode markers, and most have a better resolution potential to differentiate species among fully sequenced genomes than the most presently used markers. Some of the commonly used species-level phylogenetic markers for fungi, especially tef1-α and rpb2, were not recovered in our analysis because of their existence in multiple copies in single organisms, and because Pfam families do not always correlate with complete proteins. Keywords: Fungi, barcoding, internal transcribed spacer (ITS), translation elongation factor 1A (tef1a), ribosomal polymerase B2 (rpb2), cytochrome oxidase 1 (cox1, COI)
    corecore