91 research outputs found

    Precoloring co-Meyniel graphs

    Full text link
    The pre-coloring extension problem consists, given a graph GG and a subset of nodes to which some colors are already assigned, in finding a coloring of GG with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that ``PrExt perfect'' graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (``co-Artemis'' graphs, which are ``co-perfectly contractile'' graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs

    On graphs with no induced subdivision of K4K_4

    Get PDF
    We prove a decomposition theorem for graphs that do not contain a subdivision of K4K_4 as an induced subgraph where K4K_4 is the complete graph on four vertices. We obtain also a structure theorem for the class C\cal C of graphs that contain neither a subdivision of K4K_4 nor a wheel as an induced subgraph, where a wheel is a cycle on at least four vertices together with a vertex that has at least three neighbors on the cycle. Our structure theorem is used to prove that every graph in C\cal C is 3-colorable and entails a polynomial-time recognition algorithm for membership in C\cal C. As an intermediate result, we prove a structure theorem for the graphs whose cycles are all chordless
    • …
    corecore